# MPN **Repository Path**: fenglihuasha/MPN ## Basic Information - **Project Name**: MPN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-02 - **Last Updated**: 2024-08-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Codes_MPN Official codes of CVPR21 paper: Learning Normal Dynamics in Videos with Meta Prototype Network (https://arxiv.org/abs/2104.06689) # MPN Framework ![image](./DPU.png) ![image](./MetaLearningPhase.png) # Paper Results on Unsupervised VAD ![image](./UnsupervisedVAD.png) # Paper Results on Few-shot VAD ![image](./Few-shotVAD.png) # Preparation Please download the corresponding benchmarks in 'data' directory. Then prepare the environment as in requirement.txt. We have uploaded several trained models on online (Baidunetdisk(link:https://pan.baidu.com/s/1qcGmdmZlmAgqsAzw_i5BhA code:mapz) or Drive (https://drive.google.com/drive/folders/1ketomxctszHo7jpGQS3RxbZGq7e_M3e4?usp=sharing)). # Unsupervised Anomaly Detection Model Training Run 'python Train.py' to train a model with DPU model. # Unsupervised Anomaly Detection Model Testing Run 'python Test.py' to train a model with DPU model. # Meta-learning Anomaly Detection Model Training Run 'python Train_meta.py' to train a model with MPU model. # Meta-learning Anomaly Detection Model Testing Run 'python Test_meta.py' to test a model with MPU model. If you find this work helpful, please cite: ``` @inproceedings{Lv2021MPN, author = {Hui LV and Chen Chen and Zhen Cui and Chunyan Xu and Yong Li and Jian Yang}, title = {Learning Normal Dynamics in Videos with Meta Prototype Network}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2021} } ```