# Score-CAM **Repository Path**: finetooth/Score-CAM ## Basic Information - **Project Name**: Score-CAM - **Description**: [CVPRW 2020] Official implementation of Score-CAM in Pytorch - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-05 - **Last Updated**: 2022-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks To appear at IEEE [CVPR 2020 Workshop on Fair, Data Efficient and Trusted Computer Vision](https://fadetrcv.github.io). In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Score-CAM is a gradient-free visualization method, extended from Grad-CAM and Grad-CAM++. It achieves better visual performance and fairness for interpreting the decision making process. Paper: [Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks](http://openaccess.thecvf.com/content_CVPRW_2020/papers/w1/Wang_Score-CAM_Score-Weighted_Visual_Explanations_for_Convolutional_Neural_Networks_CVPRW_2020_paper.pdf) (Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel and Xia Hu.) Demo [Colab](https://colab.research.google.com/drive/1m1VAhKaO7Jns5qt5igfd7lSVZudoKmID?usp=sharing) ## Update **`2020.8.18`**: Score-CAM has been merged into [PaddlePaddle/InterpretDL](https://github.com/PaddlePaddle/InterpretDL). **`2020.7.11`**: Score-CAM has been merged into [keisen/tf-keras-vis](https://github.com/keisen/tf-keras-vis). **`2020.5.11`**: Score-CAM has been merged into [utkuozbulak/pytorch-cnn-visualizations](https://github.com/utkuozbulak/pytorch-cnn-visualizations). **`2020.3.24`**: Score-CAM has been merged into [frgfm/torch-cam](https://github.com/frgfm/torch-cam). ## Citation If you find this work or code is helpful in your research, please cite and star: ``` @inproceedings{wang2020score, title={Score-CAM: Score-weighted visual explanations for convolutional neural networks}, author={Wang, Haofan and Wang, Zifan and Du, Mengnan and Yang, Fan and Zhang, Zijian and Ding, Sirui and Mardziel, Piotr and Hu, Xia}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, pages={24--25}, year={2020} } ``` ## Thanks Utils are built on [flashtorch](https://github.com/MisaOgura/flashtorch), thanks for releasing this great work! ## Contact If you have any questions, feel free to contact me via: `haofanw@andrew.cmu.edu`