# ARBEx **Repository Path**: fishboner/arbex ## Basic Information - **Project Name**: ARBEx - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-26 - **Last Updated**: 2023-12-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## [ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning](https://arxiv.org/abs/2305.01486) ### [Azmine Toushik Wasi](https://azminewasi.github.io/)\*, [Karlo Serbetar](https://www.linkedin.com/in/%C5%A1ekarlo/)\*, [Raima Islam](https://www.linkedin.com/in/raima-islam-310567206/)\*, [Taki Hasan Rafi](https://takihasan.github.io/)\*, and [Dong-Kyu Chae](https://dkchae.github.io/) --- #### Our model has scored State-of-the-Art performances in multiple datasets as per [Papers with Code](https://paperswithcode.com/paper/arbex-attentive-feature-extraction-with). - RAF-DB : [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/arbex-attentive-feature-extraction-with/facial-expression-recognition-on-raf-db)](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=arbex-attentive-feature-extraction-with) - FER+ : [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/arbex-attentive-feature-extraction-with/facial-expression-recognition-on-fer-1)](https://paperswithcode.com/sota/facial-expression-recognition-on-fer-1?p=arbex-attentive-feature-extraction-with) - JAFFE: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/arbex-attentive-feature-extraction-with/facial-expression-recognition-on-jaffe)](https://paperswithcode.com/sota/facial-expression-recognition-on-jaffe?p=arbex-attentive-feature-extraction-with) --- ## Architecture Pipeline of ARBEx.

## Setup and run Put pretrained `ir50.pth` and `mobilefacenet.pth` into `arbex/models/pretrained`. By default, data is assumed to be in `../../_DATA`. The code assumes `AffWild2` as the default dataset here. If you intend to use other datasets, you may need to make certain changes in the data loading process, in `arbex/data.py`. To change the default paths, change `DIR_IMG`, `DIR_ANN_TRAIN`, `DIR_ANN_DEV` in `arbex/config.py` To install the dependencies run: ``` pip install -r requirements.txt ``` To run the training script: ``` python train.py ``` ## Working Principle [![Watch the video](Images/ARBEx.png)](https://youtu.be/I4HxYUhVd18) ## Citation ``` @misc{wasi2023arbex, title={ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning}, author={Azmine Toushik Wasi and Karlo Ĺ erbetar and Raima Islam and Taki Hasan Rafi and Dong-Kyu Chae}, year={2023}, eprint={2305.01486}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## References [POSTER_V2](https://github.com/talented-q/poster_v2) \ [ViT](https://github.com/huggingface/pytorch-image-models)