# IQA01 **Repository Path**: fl9621/IQA01 ## Basic Information - **Project Name**: IQA01 - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Image Structure and Texture Similarity (DISTS) Metric This is the repository of paper [Image Quality Assessment: Unifying Structure and Texture Similarity](https://arxiv.org/abs/2004.07728). ### Highlights: 1. A full-reference IQA model correlated well with human perception of image quality. 2. It is robust to texture variance (e.g., evaluating the images generated by GANs) and mild geometric transformations (e.g., evaluating the image pair that are not strictly point-by-point aligned). 3. It can be employed as the objective function in various optimization problems (see [optimization comparison](https://github.com/dingkeyan93/IQA-optimization)). **Three implementation versions:** 1. Pytorch [```DISTS_pt.py```](/DISTS_pytorch/DISTS_pt.py) (recommend) 2. Tensorflow [```DISTS_tf.py```](/DISTS_tensorflow/DISTS_tf.py) 3. Matlab [```DISTS.m```](/DISTS_matlab/DISTS.m). ### ====== Pytorch ====== **Installation:** - ```pip install dists-pytorch``` ### Requirements: - Python>=3.6 - Pytorch>=1.0 **Usage:** ```python from DISTS_pytorch import DISTS D = DISTS() # calculate DISTS between X, Y (a batch of RGB images, data range: 0~1) # X: (N,3,H,W) # Y: (N,3,H,W) dists_value = D(X, Y) # set 'require_grad=True, batch_average=True' to get a scalar value as loss. dists_loss = D(X, Y, require_grad=True, batch_average=True) dists_loss.backward() ``` or ```bash git clone https://github.com/dingkeyan93/DISTS cd DISTS_pytorch python DISTS_pt.py --ref --dist ``` ### ====== Tensorflow ====== **Requirements:** - Python>=3.6 - Tensorflow>=1.15 **Usage:** ```bash git clone https://github.com/dingkeyan93/DISTS cd DISTS_tensorflow python DISTS_tf.py --ref --dist ``` ### ====== Matlab ====== **Requirements:** - Matlab>=2019b **Usage:** ```bash git clone https://github.com/dingkeyan93/DISTS run demo.m help DISTS ``` ### Citation ``` @article{ding2020iqa, title={Image Quality Assessment: Unifying Structure and Texture Similarity}, author={Ding, Keyan and Ma, Kede and Wang, Shiqi and Simoncelli, Eero P.}, journal = {CoRR}, volume = {abs/2004.07728}, year={2020}, url = {https://arxiv.org/abs/2004.07728} } ```