# O-CNN **Repository Path**: fl9621/O-CNN ## Basic Information - **Project Name**: O-CNN - **Description**: No description available - **Primary Language**: C++ - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # O-CNN This repository contains the implementation of *O-CNN* and *Aadptive O-CNN* introduced in our SIGGRAPH 2017 paper and SIGGRAPH Asia 2018 paper. The code is released under the **MIT license**. - **[O-CNN: Octree-based Convolutional Neural Networks](https://wang-ps.github.io/O-CNN.html)**
By [Peng-Shuai Wang](https://wang-ps.github.io/), [Yang Liu](https://xueyuhanlang.github.io/), Yu-Xiao Guo, Chun-Yu Sun and [Xin Tong](https://www.microsoft.com/en-us/research/people/xtong/)
ACM Transactions on Graphics (SIGGRAPH), 36(4), 2017 - **[Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes](https://wang-ps.github.io/AO-CNN.html)**
By [Peng-Shuai Wang](https://wang-ps.github.io/), Chun-Yu Sun, [Yang Liu](https://xueyuhanlang.github.io/) and [Xin Tong](https://www.microsoft.com/en-us/research/people/xtong/)
ACM Transactions on Graphics (SIGGRAPH Asia), 37(6), 2018
If you use our code or models, please cite our paper. ``` @article {Wang-2017-OCNN, title = {{O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis}}, author = {Wang, Peng-Shuai and Liu, Yang and Guo, Yu-Xiao and Sun, Chun-Yu and Tong, Xin}, journal = {ACM Transactions on Graphics (SIGGRAPH)}, volume = {36}, number = {4}, year = {2017}, } @article {Wang-2018-AOCNN, title = {{Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes}}, author = {Wang, Peng-Shuai and Sun, Chun-Yu and Liu, Yang and Tong, Xin}, journal = {ACM Transactions on Graphics (SIGGRAPH Asia)}, volume = {37}, number = {6}, year = {2018}, } ``` ### Contents - [Installation](docs/installation.md) - [Data Preparation](docs/data_preparation.md) - [Shape Classification](docs/classification.md) - [Shape Retrieval](docs/retrieval.md) - [Shape Segmentation](docs/segmentation.md) - [Shape Autoencoder](docs/autoencoder.md) - [Image2Shape](docs/image2shape.md) We thank the authors of [ModelNet](http://modelnet.cs.princeton.edu), [ShapeNet](http://shapenet.cs.stanford.edu/shrec16/) and [Region annotation dataset](http://cs.stanford.edu/~ericyi/project_page/part_annotation/index.html) for sharing their 3D model datasets with the public. Please contact us (Pengshuai Wang wangps@hotmail.com, Yang Liu yangliu@microsoft.com ) if you have any problems about our implementation.