# O-CNN
**Repository Path**: fl9621/O-CNN
## Basic Information
- **Project Name**: O-CNN
- **Description**: No description available
- **Primary Language**: C++
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-05-20
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# O-CNN
This repository contains the implementation of *O-CNN* and *Aadptive O-CNN*
introduced in our SIGGRAPH 2017 paper and SIGGRAPH Asia 2018 paper.
The code is released under the **MIT license**.
- **[O-CNN: Octree-based Convolutional Neural Networks](https://wang-ps.github.io/O-CNN.html)**
By [Peng-Shuai Wang](https://wang-ps.github.io/), [Yang Liu](https://xueyuhanlang.github.io/),
Yu-Xiao Guo, Chun-Yu Sun and [Xin Tong](https://www.microsoft.com/en-us/research/people/xtong/)
ACM Transactions on Graphics (SIGGRAPH), 36(4), 2017
- **[Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes](https://wang-ps.github.io/AO-CNN.html)**
By [Peng-Shuai Wang](https://wang-ps.github.io/), Chun-Yu Sun, [Yang Liu](https://xueyuhanlang.github.io/)
and [Xin Tong](https://www.microsoft.com/en-us/research/people/xtong/)
ACM Transactions on Graphics (SIGGRAPH Asia), 37(6), 2018
If you use our code or models, please cite our paper.
```
@article {Wang-2017-OCNN,
title = {{O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis}},
author = {Wang, Peng-Shuai and Liu, Yang and Guo, Yu-Xiao and Sun, Chun-Yu and Tong, Xin},
journal = {ACM Transactions on Graphics (SIGGRAPH)},
volume = {36},
number = {4},
year = {2017},
}
@article {Wang-2018-AOCNN,
title = {{Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes}},
author = {Wang, Peng-Shuai and Sun, Chun-Yu and Liu, Yang and Tong, Xin},
journal = {ACM Transactions on Graphics (SIGGRAPH Asia)},
volume = {37},
number = {6},
year = {2018},
}
```
### Contents
- [Installation](docs/installation.md)
- [Data Preparation](docs/data_preparation.md)
- [Shape Classification](docs/classification.md)
- [Shape Retrieval](docs/retrieval.md)
- [Shape Segmentation](docs/segmentation.md)
- [Shape Autoencoder](docs/autoencoder.md)
- [Image2Shape](docs/image2shape.md)
We thank the authors of [ModelNet](http://modelnet.cs.princeton.edu),
[ShapeNet](http://shapenet.cs.stanford.edu/shrec16/) and
[Region annotation dataset](http://cs.stanford.edu/~ericyi/project_page/part_annotation/index.html)
for sharing their 3D model datasets with the public.
Please contact us (Pengshuai Wang wangps@hotmail.com, Yang Liu yangliu@microsoft.com )
if you have any problems about our implementation.