# python_workshops **Repository Path**: flashriver/python_workshops ## Basic Information - **Project Name**: python_workshops - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Python for Humanities and Social Sciences This repository contains Jupyter notebooks for the series of workshops given by the [Center for Interdisciplinary Digital Research (CIDR)](http://library.stanford.edu/department/cidr), a unit of [Stanford University Libraries](http://library.stanford.edu/), and its associated partners, on Python related topics specially crafted towards the Humanities and Social Sciences. ## Introduction to Python [[Notebook](intro_to_python.ipynb) | [Solutions](intro_to_python_filled.ipynb)] This workshop covers basic Python syntax and project set up through the teaching of basic web scraping with [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/). ## Data Manipulation and Visualization with Python [[Notebook](data_manipulation.ipynb) | [Solutions](data_manipulation_filled.ipynb)] This workshop guides students through fundamentals of data manipulation and visualization with [Pandas](http://pandas.pydata.org/), [matplotlib](https://matplotlib.org/), and [Seaborn](http://seaborn.pydata.org/). ## Natural Language Processing with Python [[Notebook](intro_to_nlp.ipynb) | [Solutions](intro_to_nlp_filled.ipynb)] This workshop teaches students natural language processing in Python, with topics such as tokenization, part of speech tagging, and sentiment analysis, using [TextBlob](https://textblob.readthedocs.io/en/dev/). ## Introduction to Machine Learning [[Notebook](intro_to_ml.ipynb) | [Solutions](intro_to_ml_filled.ipynb)] This workshop introduces the basic workflow of machine learning in Python using [scikit-learn](http://scikit-learn.org/stable/). It covers topics from feature engineering or feature learning to model evaluation and selection.