# AutoRCCar **Repository Path**: flying3561031/AutoRCCar ## Basic Information - **Project Name**: AutoRCCar - **Description**: [hamuchiwa/AutoRCCar]项目的中文文档。每个代码文件都有同名markdwon文件来讲解。这是一个用 RC 小车、树莓派、Arduino和开源软件实现的小规模的自动驾驶项目。 - **Primary Language**: Python - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 2 - **Created**: 2018-05-30 - **Last Updated**: 2022-04-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## AutoRCCar [中文] 查看运动中的小车(YouTube视频,显示不了实属正常) 这是一个用 RC 小车、树莓派、Arduino和开源软件实现的小规模的自动驾驶项目。 系统使用了Raspberry Pi带着一个摄像头和一个用来测距的超声传感器,一个主机操作驾驶方向,物体识别(这里识别的是停止标志和红绿灯)、目标物测距,一个Arduino board用来控制小车 ## 依赖 * Raspberry Pi: - Picamera * Computer: - Numpy - OpenCV 2.4.10.1 - Pygame - PiSerial ## 目录结构 - raspberrt_pi - stream_client.py:以jpeg格式将视频帧流式传输到主机 - ultrasonic_client.py:将由传感器测量的距离数据发送到主机 - Arduino - rc_keyboard_control.ino:作为rc控制器和计算机之间的接口,允许用户通过USB串行接口发送命令 - 电脑 - cascade_xml 训练级联分类器xml文件 - 棋盘 用于校准的图像,由pi相机捕获 - training_data 以npz格式训练神经网络的图像数据 - testing_data 以npz格式测试神经网络的图像数据 - training_images 在图像训练数据采集阶段保存视频帧(可选) - mlp_xml 在xml文件中训练神经网络参数 - rc_control_test.py:带键盘的驱动RC车(测试目的) - picam_calibration.py:pi相机校准,返回相机矩阵 - collect_training_data.py:接收流式视频帧和标签框以供后续培训 - mlp_training.py:神经网络训练 - mlp_predict_test.py:用测试数据测试训练有素的神经网络 - rc_driver.py:多线程服务器程序接收视频帧和传感器数据,并允许RC车载驱动器本身具有停车标志,交通灯检测和前碰撞避免能力 ## 如何开车 1. Flash Arduino:Flash “rc_keyboard_control.ino”到Arduino并运行“rc_control_test.py”来驱动rc车用键盘(测试目的) 1. Pi相机校准:使用pi相机以各种角度拍摄多张棋盘图像,并将其放入“chess_board”文件夹中,运行“picam_calibration.py”,并返回相机矩阵,这些参数将用于“rc_driver.py” 1. 收集培训数据和测试数据:首先运行“collect_training_data.py”,然后在raspberry pi上运行“stream_client.py”。用户按键盘驱动RC车,只有当有按键动作时才保存框架。完成驾驶后,按“q”退出,数据保存为npz文件。 1. 神经网络训练:运行“mlp_training.py”,取决于所选择的参数,需要一些时间训练。培训后,参数保存在“mlp_xml”文件夹中 1. 神经网络测试:运行“mlp_predict_test.py”从“test_data”文件夹加载测试数据,并从“mlp_xml”文件夹中的xml文件中训练参数 1. 级联分类器训练(可选):训练有素的停车标志和交通灯分类器包含在“cascade_xml”文件夹中,如果您有兴趣培训您自己的分类器,请参考OpenCV文档和Thorsten Ball 1. 自驾驾驶:首先运行“rc_driver.py”在计算机上启动服务器,然后在raspberry pi上运行“stream_client.py”和“ultrasonic_client.py”。 > 原项目是适用于python 2.7 本项目改成适用于 python3 > test 文件夹下讲解不丰富,待改进 --- ## AutoRCCar [English] See self-driving in action A scaled down version of self-driving system using a RC car, Raspberry Pi, Arduino and open source software. The system uses a Raspberry Pi with a camera and an ultrasonic sensor as inputs, a processing computer that handles steering, object recognition (stop sign and traffic light) and distance measurement, and an Arduino board for RC car control. ### Dependencies * Raspberry Pi: - Picamera * Computer: - Numpy - OpenCV 2.4.10.1 - Pygame - PiSerial ### About - raspberrt_pi/ - ***stream_client.py***: stream video frames in jpeg format to the host computer - ***ultrasonic_client.py***: send distance data measured by sensor to the host computer - arduino/ - ***rc_keyboard_control.ino***: acts as a interface between rc controller and computer and allows user to send command via USB serial interface - computer/ - cascade_xml/ - trained cascade classifiers xml files - chess_board/ - images for calibration, captured by pi camera - training_data/ - training data for neural network in npz format - training_images/ - saved video frames during image training data collection stage (optional) - mlp_xml/ - trained neural network parameters in a xml file - ***picam_calibration.py***: pi camera calibration, returns camera matrix - ***collect_training_data.py***: receive streamed video frames and label frames for later training - ***mlp_training.py***: neural network training - ***rc_driver.py***: a multithread server program receives video frames and sensor data, and allows RC car drives by itself with stop sign, traffic light detection and front collision avoidance capabilities - test/ - ***rc_control_test.py***: RC car control with keyboard - ***stream_server_test.py***: video streaming from Pi to computer - ***ultrasonic_server_test.py***: sensor data streaming from Pi to computer - Traffic_signal/ - trafic signal sketch contributed by [@geek111](https://github.com/geek1111) ### How to drive 1. **Flash Arduino**: Flash *“rc_keyboard_control.ino”* to Arduino and run *“rc_control_test.py”* to drive the rc car with keyboard (testing purpose) 2. **Pi Camera calibration:** Take multiple chess board images using pi camera at various angles and put them into “chess_board” folder, run *“picam_calibration.py”* and it returns the camera matrix, those parameters will be used in *“rc_driver.py”* 3. **Collect training data and testing data:** First run *“collect_training_data.py”* and then run *“stream_client.py”* on raspberry pi. User presses keyboard to drive the RC car, frames are saved only when there is a key press action. When finished driving, press “q” to exit, data is saved as a npz file. 4. **Neural network training:** Run *“mlp_training.py”*, depend on the parameters chosen, it will take some time to train. After training, model will be saved in “mlp_xml” folder 5. **Cascade classifiers training (optional):** trained stop sign and traffic light classifiers are included in the "cascade_xml" folder, if you are interested in training your own classifiers, please refer to [OpenCV documentation](http://docs.opencv.org/doc/user_guide/ug_traincascade.html) and [this great tutorial by Thorsten Ball](http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html) 6. **Self-driving in action**: First run *“rc_driver.py”* to start the server on the computer and then run *“stream_client.py”* and *“ultrasonic_client.py”* on raspberry pi.