# eval-co-sod **Repository Path**: fork-project/eval-co-sod ## Basic Information - **Project Name**: eval-co-sod - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-17 - **Last Updated**: 2025-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Logo

PyTorch-Based Evaluation Tool for Co-Saliency Detection

Automatically evaluate 8 metrics and draw 4 types of curves
⭐ Project Home »

*** **Eval Co-SOD** is an extended version of [Evaluate-SOD](https://github.com/Hanqer/Evaluate-SOD) for **co-saliency detection task**. It provides eight metrics and four curves: * Metrics: * Mean Absolute Error (MAE) * Maximum F-measure (max-Fm) * Mean F-measure (mean-Fm) * Maximum E-measure (max-Em) * Mean E-measure (mean-Em) * S-measure (Sm) * Average Precision (AP) * Area Under Curve (AUC) * Curves: * Precision-Recall (PR) curve * Receiver Operating Characteristic (ROC) curve * F-measure curve * E-measure curve ## Prerequisites * PyTorch >= 1.0 ## Usage ### 1. Prepare your data The structure of `root_dir` should be organized as follows: ``` . ├── gt │   ├── dataset1 │   │   ├── accordion │   │   │   ├── 51499.png │   │   │   └── 186605.png │   │   └── alarm clock │   │      ├── 51499.png │   │      └── 186605.png │   ├── dataset2 ... │   └── dataset3 ... │  └── pred └── method1 │   ├── dataset1 │   │   ├── accordion │   │   │   ├── 51499.png │   │   │   └── 186605.png │   │   └── alarm clock │   │      ├── 51499.png │   │      └── 186605.png │   ├── dataset2 .. │   └── dataset3 ... └──method2 ... ``` ### 2. Evaluate on the 8 metrices 1. Configure `eval.sh` ```shell --methods method1+method2+method3 (Multiple items are connected with '+') --datasets dataset1+dataset2+dataset3 --save_dir ./Result (Path to save results) --root_dir ../SalMaps ``` 2. Run by ``` sh eval.sh ``` ### 3. Draw the 4 types of curves 1. Configure `plot_curve.sh` ```shell --methods method1+method2+method3 (Multiple items are connected with '+') --datasets dataset1+dataset2+dataset3 --out_dir ./Result/Curves (Path to save results) --res_dir ./Result/Detail ``` 2. Run by ``` sh plot_curve.sh ``` ## Citation If you find this tool is useful for your research, please cite the following papers. ``` @inproceedings{zhang2020gicd, title={Gradient-Induced Co-Saliency Detection}, author={Zhang, Zhao and Jin, Wenda and Xu, Jun and Cheng, Ming-Ming}, booktitle={European Conference on Computer Vision (ECCV)}, year={2020} } @inproceedings{fan2020taking, title={Taking a Deeper Look at the Co-salient Object Detection}, author={Fan, Deng-Ping and Lin, Zheng and Ji, Ge-Peng and Zhang, Dingwen and Fu, Huazhu and Cheng, Ming-Ming}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2020} } ``` ## Contact If you have any questions, feel free to contact me via `zzhang🥳mail😲nankai😲edu😲cn`