# eval-co-sod
**Repository Path**: fork-project/eval-co-sod
## Basic Information
- **Project Name**: eval-co-sod
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-01-17
- **Last Updated**: 2025-01-17
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
PyTorch-Based Evaluation Tool for Co-Saliency Detection
Automatically evaluate 8 metrics and draw 4 types of curves
⭐ Project Home »
***
**Eval Co-SOD** is an extended version of [Evaluate-SOD](https://github.com/Hanqer/Evaluate-SOD) for **co-saliency detection task**.
It provides eight metrics and four curves:
* Metrics:
* Mean Absolute Error (MAE)
* Maximum F-measure (max-Fm)
* Mean F-measure (mean-Fm)
* Maximum E-measure (max-Em)
* Mean E-measure (mean-Em)
* S-measure (Sm)
* Average Precision (AP)
* Area Under Curve (AUC)
* Curves:
* Precision-Recall (PR) curve
* Receiver Operating Characteristic (ROC) curve
* F-measure curve
* E-measure curve
## Prerequisites
* PyTorch >= 1.0
## Usage
### 1. Prepare your data
The structure of `root_dir` should be organized as follows:
```
.
├── gt
│ ├── dataset1
│ │ ├── accordion
│ │ │ ├── 51499.png
│ │ │ └── 186605.png
│ │ └── alarm clock
│ │ ├── 51499.png
│ │ └── 186605.png
│ ├── dataset2 ...
│ └── dataset3 ...
│
└── pred
└── method1
│ ├── dataset1
│ │ ├── accordion
│ │ │ ├── 51499.png
│ │ │ └── 186605.png
│ │ └── alarm clock
│ │ ├── 51499.png
│ │ └── 186605.png
│ ├── dataset2 ..
│ └── dataset3 ...
└──method2 ...
```
### 2. Evaluate on the 8 metrices
1. Configure `eval.sh`
```shell
--methods method1+method2+method3 (Multiple items are connected with '+')
--datasets dataset1+dataset2+dataset3
--save_dir ./Result (Path to save results)
--root_dir ../SalMaps
```
2. Run by
```
sh eval.sh
```
### 3. Draw the 4 types of curves
1. Configure `plot_curve.sh`
```shell
--methods method1+method2+method3 (Multiple items are connected with '+')
--datasets dataset1+dataset2+dataset3
--out_dir ./Result/Curves (Path to save results)
--res_dir ./Result/Detail
```
2. Run by
```
sh plot_curve.sh
```
## Citation
If you find this tool is useful for your research, please cite the following papers.
```
@inproceedings{zhang2020gicd,
title={Gradient-Induced Co-Saliency Detection},
author={Zhang, Zhao and Jin, Wenda and Xu, Jun and Cheng, Ming-Ming},
booktitle={European Conference on Computer Vision (ECCV)},
year={2020}
}
@inproceedings{fan2020taking,
title={Taking a Deeper Look at the Co-salient Object Detection},
author={Fan, Deng-Ping and Lin, Zheng and Ji, Ge-Peng and Zhang, Dingwen and Fu, Huazhu and Cheng, Ming-Ming},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2020}
}
```
## Contact
If you have any questions, feel free to contact me via `zzhang🥳mail😲nankai😲edu😲cn`