# flownet2 **Repository Path**: forrestchen/flownet2 ## Basic Information - **Project Name**: flownet2 - **Description**: FlowNet2 for optical flow algorithm - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-18 - **Last Updated**: 2024-06-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # flownet2-pytorch Pytorch implementation of [FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks](https://arxiv.org/abs/1612.01925). Multiple GPU training is supported, and the code provides examples for training or inference on [MPI-Sintel](http://sintel.is.tue.mpg.de/) clean and final datasets. The same commands can be used for training or inference with other datasets. See below for more detail. Inference using fp16 (half-precision) is also supported. For more help, type
python main.py --help ## Network architectures Below are the different flownet neural network architectures that are provided.
A batchnorm version for each network is also available. - **FlowNet2S** - **FlowNet2C** - **FlowNet2CS** - **FlowNet2CSS** - **FlowNet2SD** - **FlowNet2** ## Custom layers `FlowNet2` or `FlowNet2C*` achitectures rely on custom layers `Resample2d` or `Correlation`.
A pytorch implementation of these layers with cuda kernels are available at [./networks](./networks).
Note : Currently, half precision kernels are not available for these layers. ## Data Loaders Dataloaders for FlyingChairs, FlyingThings, ChairsSDHom and ImagesFromFolder are available in [datasets.py](./datasets.py).
## Loss Functions L1 and L2 losses with multi-scale support are available in [losses.py](./losses.py).
## Installation # get flownet2-pytorch source git clone https://github.com/NVIDIA/flownet2-pytorch.git cd flownet2-pytorch # install custom layers bash install.sh ### Python requirements Currently, the code supports python 3 * numpy * PyTorch ( == 0.4.1, for <= 0.4.0 see branch [python36-PyTorch0.4](https://github.com/NVIDIA/flownet2-pytorch/tree/python36-PyTorch0.4)) * scipy * scikit-image * tensorboardX * colorama, tqdm, setproctitle ## Converted Caffe Pre-trained Models We've included caffe pre-trained models. Should you use these pre-trained weights, please adhere to the [license agreements](https://drive.google.com/file/d/1TVv0BnNFh3rpHZvD-easMb9jYrPE2Eqd/view?usp=sharing). * [FlowNet2](https://drive.google.com/file/d/1hF8vS6YeHkx3j2pfCeQqqZGwA_PJq_Da/view?usp=sharing)[620MB] * [FlowNet2-C](https://drive.google.com/file/d/1BFT6b7KgKJC8rA59RmOVAXRM_S7aSfKE/view?usp=sharing)[149MB] * [FlowNet2-CS](https://drive.google.com/file/d/1iBJ1_o7PloaINpa8m7u_7TsLCX0Dt_jS/view?usp=sharing)[297MB] * [FlowNet2-CSS](https://drive.google.com/file/d/157zuzVf4YMN6ABAQgZc8rRmR5cgWzSu8/view?usp=sharing)[445MB] * [FlowNet2-CSS-ft-sd](https://drive.google.com/file/d/1R5xafCIzJCXc8ia4TGfC65irmTNiMg6u/view?usp=sharing)[445MB] * [FlowNet2-S](https://drive.google.com/file/d/1V61dZjFomwlynwlYklJHC-TLfdFom3Lg/view?usp=sharing)[148MB] * [FlowNet2-SD](https://drive.google.com/file/d/1QW03eyYG_vD-dT-Mx4wopYvtPu_msTKn/view?usp=sharing)[173MB] ## Inference # Example on MPISintel Clean python main.py --inference --model FlowNet2 --save_flow --inference_dataset MpiSintelClean \ --inference_dataset_root /path/to/mpi-sintel/clean/dataset \ --resume /path/to/checkpoints ## Training and validation # Example on MPISintel Final and Clean, with L1Loss on FlowNet2 model python main.py --batch_size 8 --model FlowNet2 --loss=L1Loss --optimizer=Adam --optimizer_lr=1e-4 \ --training_dataset MpiSintelFinal --training_dataset_root /path/to/mpi-sintel/final/dataset \ --validation_dataset MpiSintelClean --validation_dataset_root /path/to/mpi-sintel/clean/dataset # Example on MPISintel Final and Clean, with MultiScale loss on FlowNet2C model python main.py --batch_size 8 --model FlowNet2C --optimizer=Adam --optimizer_lr=1e-4 --loss=MultiScale --loss_norm=L1 \ --loss_numScales=5 --loss_startScale=4 --optimizer_lr=1e-4 --crop_size 384 512 \ --training_dataset FlyingChairs --training_dataset_root /path/to/flying-chairs/dataset \ --validation_dataset MpiSintelClean --validation_dataset_root /path/to/mpi-sintel/clean/dataset ## Results on MPI-Sintel [![Predicted flows on MPI-Sintel](./image.png)](https://www.youtube.com/watch?v=HtBmabY8aeU "Predicted flows on MPI-Sintel") ## Reference If you find this implementation useful in your work, please acknowledge it appropriately and cite the paper: ```` @InProceedings{IMKDB17, author = "E. Ilg and N. Mayer and T. Saikia and M. Keuper and A. Dosovitskiy and T. Brox", title = "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks", booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)", month = "Jul", year = "2017", url = "http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17" } ```` ``` @misc{flownet2-pytorch, author = {Fitsum Reda and Robert Pottorff and Jon Barker and Bryan Catanzaro}, title = {flownet2-pytorch: Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks}, year = {2017}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/NVIDIA/flownet2-pytorch}} } ``` ## Related Optical Flow Work from Nvidia Code (in Caffe and Pytorch): [PWC-Net](https://github.com/NVlabs/PWC-Net)
Paper : [PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume](https://arxiv.org/abs/1709.02371). ## Acknowledgments Parts of this code were derived, as noted in the code, from [ClementPinard/FlowNetPytorch](https://github.com/ClementPinard/FlowNetPytorch).