# Deep-Cross-Modal-Projection-Learning-for-Image-Text-Matching **Repository Path**: forwardDuy/Deep-Cross-Modal-Projection-Learning-for-Image-Text-Matching ## Basic Information - **Project Name**: Deep-Cross-Modal-Projection-Learning-for-Image-Text-Matching - **Description**: No description available - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-14 - **Last Updated**: 2024-11-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Cross-Modal Projection Learning for Image-Text Matching This is a Pytorch implmentation for the paper [Deep Cross-Modal Projection Learning for Image-Text Matching](http://openaccess.thecvf.com/content_ECCV_2018/papers/Ying_Zhang_Deep_Cross-Modal_Projection_ECCV_2018_paper.pdf). The official implementation in TensorFlow can be found [here](https://github.com/YingZhangDUT/Cross-Modal-Projection-Learning). ## Requirement * Python 3.5 * Pytorch 1.0.0 & torchvision 0.2.1 * numpy * scipy 1.2.1 ## Data Preparation - Download the pre-computed/pre-extracted data from [GoogleDrive](https://drive.google.com/drive/folders/1Nbx5Oa5746_uAcuRi73DmuhQhrxvrAc9?usp=sharing) and move them to ```data/processed``` folder. Or you can use the file ```dataset/preprocess.py``` to prepare your own data. - *[Optional]* Download the pre-trained model weights from [GoogleDrive](https://drive.google.com/drive/folders/1LtTjWeGuLNvQYMTjdrYbdVjbxr7bLQQC?usp=sharing) and move them to ```pretrained_models``` folder. ## Training & Testing You should firstly change the param ```model_path``` to your current directory. ``` sh scripts/run.sh ``` You can directly run the code instead of performing training and testing seperately. Or training: ``` sh scripts/train.sh ``` Or testing: ``` sh scripts/test.sh ```