# OpenGS-SLAM **Repository Path**: freecode01n/OpenGS-SLAM ## Basic Information - **Project Name**: OpenGS-SLAM - **Description**: AI_Robot_SLAM - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-04-01 - **Last Updated**: 2025-04-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

RGB-Only Gaussian Splatting SLAM for Unbounded Outdoor Scenes

Sicheng Yu* · Chong Cheng* · Yifan Zhou · Xiaojun Yang · Hao Wang✉

The Hong Kong University of Science and Technology (GuangZhou)

(* Equal Contribution)

ICRA 2025

[[Project page](https://3dagentworld.github.io/opengs-slam/)],[[arxiv](https://arxiv.org/abs/2502.15633)] # Getting Started ## Installation 1. Clone OpenGS-SLAM. ```bash git clone https://github.com/3DAgentWorld/OpenGS-SLAM.git --recursive cd OpenGS-SLAM ``` 2. Setup the environment. ```bash conda env create -f environment.yml conda activate opengs-slam ``` 3. Compile submodules for Gaussian splatting ```bash pip install submodules/simple-knn pip install submodules/diff-gaussian-rasterization ``` 4. Compile the cuda kernels for RoPE (as in CroCo v2 and DUSt3R). ```bash cd croco/models/curope/ python setup.py build_ext --inplace cd ../../../ ``` Our test setup was: - Ubuntu 20.04: `pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 cudatoolkit=11.8` - NVIDIA RTX A6000 ## Checkpoints You can download the *'DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'* checkpoint from the [DUSt3R](https://github.com/naver/dust3r) code repository, and save it to the 'checkpoints' folder. Alternatively, download it directly using the following method: ```bash mkdir -p checkpoints/ wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/ ``` Please note that you must agree to the DUSt3R license when using it. ## Downloading Datasets The processed data for the 9 Waymo segments can be downloaded via [baidu](https://pan.baidu.com/s/1I1rnB6B8k2d4wzcRMT6gjA?pwd=omcg ) or [google](https://drive.google.com/drive/folders/1xUyNuNzUtsvZIV_q5Qz9zIXMGoMbLuCr?usp=sharing). Save data under the `datasets/waymo` directory. ## Run ```bash ## Taking 100613 as an example CUDA_VISIBLE_DEVICES=0 python slam.py --config configs/mono/waymo/100613.yaml ## All 9 Waymo scenes bash run_waymo.sh ``` ## Demo - If you want to view the real-time interactive SLAM window, please change `Results-use_gui` in `base_config.yaml` to True. - When running on an Ubuntu system, a GUI window will pop up. ## Run on other dataset - Please organize your data format and modify the code in `utils/dataset.py`. - Depth map input interface is still retained in the code, although we didn't use it for SLAM. # Acknowledgement - This work is built on [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [MonoGS](https://github.com/muskie82/MonoGS), and [DUSt3R](https://github.com/naver/dust3r), thanks for these great works. - For more details about Demo, please refer to [MonoGS](https://github.com/muskie82/MonoGS), as we are using its visualization code. # Citation If you found this code/work to be useful in your own research, please considering citing the following: ```bibtex @article{yu2025rgb, title={Rgb-only gaussian splatting slam for unbounded outdoor scenes}, author={Yu, Sicheng and Cheng, Chong and Zhou, Yifan and Yang, Xiaojun and Wang, Hao}, journal={arXiv preprint arXiv:2502.15633}, year={2025} } ```