# AnimeGANv2
**Repository Path**: front-man/AnimeGANv2
## Basic Information
- **Project Name**: AnimeGANv2
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-11-22
- **Last Updated**: 2021-11-22
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# AnimeGANv2
[Open Source]. The improved version of AnimeGAN.
Landscape photos/videos to anime
-----
**Focus:**
| Anime style |
Film |
Picture Number |
Quality |
Download Style Dataset |
| Miyazaki Hayao |
The Wind Rises |
1752 |
1080p |
Link |
| Makoto Shinkai |
Your Name & Weathering with you |
1445 |
BD |
| Kon Satoshi |
Paprika |
1284 |
BDRip |
Different styles of training have different loss weights!
**News:**
```yaml
The improvement directions of AnimeGANv2 mainly include the following 4 points:
```
- [x] 1. Solve the problem of high-frequency artifacts in the generated image.
- [x] 2. It is easy to train and directly achieve the effects in the paper.
- [x] 3. Further reduce the number of parameters of the generator network. **(generator size: 8.17 Mb)**, The lite version has a smaller generator model.
- [x] 4. Use new high-quality style data, which come from BD movies as much as possible.
AnimeGAN can be accessed from [here](https://github.com/TachibanaYoshino/AnimeGAN).
___
## Requirements
- python 3.6
- tensorflow-gpu
- tensorflow-gpu 1.8.0 (ubuntu, GPU 1080Ti or Titan xp, cuda 9.0, cudnn 7.1.3)
- tensorflow-gpu 1.15.0 (ubuntu, GPU 2080Ti, cuda 10.0.130, cudnn 7.6.0)
- opencv
- tqdm
- numpy
- glob
- argparse
## Usage
### 1. Download vgg19
> [vgg19.npy](https://github.com/TachibanaYoshino/AnimeGAN/releases/tag/vgg16%2F19.npy)
### 2. Download Train/Val Photo dataset
> [Link](https://github.com/TachibanaYoshino/AnimeGAN/releases/tag/dataset-1)
### 3. Do edge_smooth
> `python edge_smooth.py --dataset Hayao --img_size 256`
### 4. Calculate the three-channel(BGR) color difference
> `python data_mean.py --dataset Hayao`
### 5. Train
> `python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --epoch 101 --init_epoch 10`
> For light version: `python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --light --epoch 101 --init_epoch 10`
### 6. Extract the weights of the generator
> `python get_generator_ckpt.py --checkpoint_dir ../checkpoint/AnimeGAN_Hayao_lsgan_300_300_1_2_10_1 --style_name Hayao`
### 7. Inference
> `python test.py --checkpoint_dir checkpoint/generator_Hayao_weight --test_dir dataset/test/HR_photo --style_name Hayao/HR_photo`
### 8. Convert video to anime
> `python video2anime.py --video video/input/お花見.mp4 --checkpoint_dir checkpoint/generator_Paprika_weight`
____
## Results

____
:heart_eyes: Photo to Paprika Style












____
:heart_eyes: Photo to Hayao Style












____
:heart_eyes: Photo to Shinkai Style












## License
This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGANv2 given that you agree to my license terms.
## Author
Xin Chen