# InResNet **Repository Path**: frontxiang/InResNet ## Basic Information - **Project Name**: InResNet - **Description**: Interpolation between Residual and Non-Residual Networks, ICML 2020. https://arxiv.org/abs/2006.05749 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-07 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Interpolation between Residual and Non-Residual Networks Zonghan Yang, Yang Liu, Chenglong Bao, and Zuoqiang Shi. https://arxiv.org/abs/2006.05749 ## Accuracy First of all, make directory according to the set random seed (i.e., RANDOM_SEED=0): ``` mkdir ./110layer/ mkdir ./110layer/seed0/ mkdir ./110layer/seed0/result/ ``` Then train an In-ResNet or \lambda-In-ResNet (change the commented lines in train.py and InResNet.py accordingly). The accuracy over test set will be displayed at the end of training. ``` python train.py [RANDOM_SEED] [SAVED_DIRECTORY] [MODEL_NAME] [LOG_FILE] [GPU_NO] ``` For example: ``` [RANDOM_SEED] = "0" [SAVED_DIRECTORY] = "./110layer/seed0" [MODEL_NAME] = "In-ResNet-110" [LOG_FILE] = "./110layer/stats.txt" [GPU_NO] = "0" ``` ## Robustness Against Stochastic Noise Test the trained model on the stochastic noise groups in CIFAR-C: ``` python test_noise.py [MODEL_PATH] [GPU_NO] [LOG_FILE] ``` For example: ``` [MODEL_PATH] = "./110layer/seed0/result/test-test1.mdlpkl" [GPU_NO] = "0" [LOG_FILE] = "./110layer/noise_stats.txt" ``` ## Robustness Against Adversarial Attacks Test the trained model against FGSM/IFGSM/PGD attack: ``` python test_{fgsm/ifgsm/pgd}.py [MODEL_PATH] [GPU_NO] [LOG_FILE] [RADIUS] ``` For example: ``` [MODEL_PATH] = "./110layer/seed0/result/test-test1.mdlpkl" [GPU_NO] = "0" [LOG_FILE] = "./110layer/fgsm_stats.txt" # or "./110layer/ifgsm_stats.txt", "./110layer/pgd_stats.txt" [RADIUS] = "8" # This means the attack radius $\epsilon = 8/255$ ``` ## Dependencies ``` PyTorch >= 1.2.0 ```