# MSGNet **Repository Path**: frontxiang/MSGNet ## Basic Information - **Project Name**: MSGNet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-02-04 - **Last Updated**: 2024-02-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MSGNet (AAAI2024) Paper Link:[MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting](https://arxiv.org/abs/2401.00423) ## Usage - Train and evaluate MSGNet - You can use the following command:`sh ./scripts/ETTh1.sh`. - Train your model - Add model file in the folder `./models/.py`. - Add model in the ***class*** Exp_Main. ## Model MSGNet employs several ScaleGraph blocks, each encompassing three pivotal modules: an FFT module for multi-scale data identification, an adaptive graph convolution module for inter-series correlation learning within a time scale, and a multi-head attention module for intra-series correlation learning.
## Main Results Forecast results with 96 review window and prediction length {96, 192, 336, 720}. The best result is represented in bold, followed by underline.
## Citation ``` @article{cai2023msgnet, title={MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting}, author={Cai, Wanlin and Liang, Yuxuan and Liu, Xianggen and Feng, Jianshuai and Wu, Yuankai}, journal={arXiv preprint arXiv:2401.00423}, year={2023} } ``` ## Acknowledgement We appreciate the valuable contributions of the following GitHub. - LTSF-Linear (https://github.com/cure-lab/LTSF-Linear) - TimesNet (https://github.com/thuml/TimesNet) - Time-Series-Library (https://github.com/thuml/Time-Series-Library) - MTGnn (https://github.com/nnzhan/MTGNN) - Autoformer (https://github.com/thuml/Autoformer) - Informer (https://github.com/zhouhaoyi/Informer2020)