# NASRL_DQN **Repository Path**: frontxiang/NASRL_DQN ## Basic Information - **Project Name**: NASRL_DQN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-13 - **Last Updated**: 2021-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NASRL_DQN ## NASRL_DQN is a PyTorch combination implementation of [Neural Architecture Search with Reinforcement Learning](https://arxiv.org/pdf/1611.01578.pdf) and [Deep Q learning](https://www.nature.com/articles/nature14236) ## Installation ```bash git clone https://github.com/RL4RL/NASRL_DQN.git ``` ```python pip install -r requirements.txt ``` Install [Pytorch](https://pytorch.org/)(v1.7) Add NASRL_DQN path into Python path: export PYTHONPATH=PATH_TO_NASRL_DQN:$PYTHONPATH ## Running ### Train a single neural network on Atari datsets(Currently only for Pong game). ```python python dql/dqn.py --conf block_conf.json ``` ### Run Neural Architecture Search using RNN for multiple deep Q learning ```python python nsarl/nas.py -c ./outputs/ ``` ### Run Neural Architecture Search using Evolutionary algorithm. ```python python evo2.py ``` ### Contributor (Alphabetical order) @[haotianteng](https://github.com/haotianteng) @[xcui297](https://github.com/xcui297) @[ypkuo708](https://github.com/ypkuo708)