# attacking_federate_learning **Repository Path**: frontxiang/attacking_federate_learning ## Basic Information - **Project Name**: attacking_federate_learning - **Description**: No description available - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-04 - **Last Updated**: 2021-10-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Federate Learning 攻防复现篇 更新日期截止2020年5月22日,项目定期维护和更新,维护各种SOTA的Federated Learning的攻防模型。(更新中。。) ## 论文 (Defend) 1. (**Krum**): Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent【NIPS 2017】 2. (**trimmed_mean**): D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings of the International Conference on Machine Learning (ICML), 2018. 3. (**bulyan**): E. M. El Mhamdi, R. Guerraoui, and S. Rouault. The hidden vulnerability of distributed learning in Byzantium. In Proceedings of the 35th International Conference on Machine Learning (ICML), pages 3521–3530, 2018. ------- ## 论文 (Attack) 4. A Little Is Enough: Circumventing Defenses For Distributed Learning【NIPS 2019】 代码运行 ``` mkdir logs python main.py ```