# nas-rl **Repository Path**: frontxiang/nas-rl ## Basic Information - **Project Name**: nas-rl - **Description**: No description available - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-13 - **Last Updated**: 2021-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # nas-rl ### Description Neural Architecture Search poses a problem for Deep Learning. We use a Reinforcement Learning method to solve this issue, with multiple worker agents. The approach uses multiple DDPG agents, which are run by a controller and treats the environment of the dataset as a input to work on. - Model: variable number of nodes, fixed number of hidden layers ``` Framework: PyTorch Mode of Update: Asynchronous Algorithm: Multi-Agent DDPG Environment: Datasets Neural Network: DNNs Sampling: Replay Buffer Type of Learning: Actor-Critic Method ``` The controller can be trained on GPUs as well. ### Dependencies ``` torch numpy pandas sklearn ``` ### Installation ``` git clone https://github.com/wolflegend99/nas-rl.git ```