# scikit-learn-book **Repository Path**: frontxiang/scikit-learn-book ## Basic Information - **Project Name**: scikit-learn-book - **Description**: Source code for the "Learning scikit-learn: Machine Learning in Python" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-07 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Learning scikit-learn: Machine Learning in Python. ================================================== Ipython sources for each chapter of the book -------------------------------------------- This repository holds all the ipython source and data for the "Learning scikit-learn: machine learning in Python" book, by Raúl Garreta and Guillermo Moncecchi (http://www.packtpub.com/learning-scikit-learn-machine-in-python/book). For the planned 2nd edition, we added Diego Garat as a new author. * [Chapter 1 - A Gentle Introduction to Machine Learning](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%201%20%20-%20A%20Gentle%20Introduction%20to%20Machine%20Learning.ipynb) * [Chapter 1 (2nd ed.) - A Gentle Introduction to Machine Learning with Python and Scikit-learn](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%201%20%282nd%20ed.%29%20-%20A%20Gentle%20Introduction%20to%20Machine%20Learning%20with%20Python%20and%20Scikit-learn.ipynb) - Extended version, including classification, clustering and regression!. Warning:Python 3 * [Chapter 2 - Supervised Learning - Image Recognition with Support Vector Machines](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%202%20-%20Supervised%20Learning%20-%20Image%20Recognition%20with%20Support%20Vector%20Machines.ipynb) * [Chapter 2 - Supervised Learning - Regression](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%202%20-%20Supervised%20Learning%20-%20Regression.ipynb) * [Chapter 2 - Supervised Learning - Text Classification with Naive Bayes](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%202%20-%20Supervised%20Learning%20-%20Text%20Classification%20with%20Naive%20Bayes.ipynb) * [Chapter 2 - Supervised Learning - Explaining Titanic Hypothesis with Decision Trees](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%202%20-%20Supervised%20learning%20-%20Explaining%20Titanic%20Hypothesis%20with%20Decision%20Trees.ipynb) * [Chapter 3 - Unsupervised Learning - Clustering Handwritten Digits](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%203%20-%20Unsupervised%20Learning%20-%20Clustering%20Handwritten%20Digits.ipynb) * [Chapter 3 - Unsupervised Learning - Principal Component Analysis](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%203%20-%20Unsupervised%20Learning%20-%20Principal%20Component%20Analysis.ipynb) * [Chapter 4 - Advanced Features - Feature Engineering and Selection](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%204%20-%20Advanced%20Features%20-%20Feature%20Engineering%20and%20Selection.ipynb) * [Chapter 4 - Advanced Features - Model Selection](http://nbviewer.ipython.org/github/gmonce/scikit-learn-book/blob/master/Chapter%204%20-%20Advanced%20Features%20-%20Model%20Selection.ipynb)