# EVPTrack **Repository Path**: frozen_bird/evptrack ## Basic Information - **Project Name**: EVPTrack - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-14 - **Last Updated**: 2024-07-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [AAAI'2024] - EVPTrack The official implementation for the **AAAI 2024** paper \[[_Explicit Visual Prompts for Visual Object Tracking_](https://arxiv.org/abs/2401.03142)\]. [[Models](https://drive.google.com/drive/folders/1KqpBOGAoUrN8XCU0TkPtuF-ouAyla9kP?usp=drive_link)], [[Raw Results](https://drive.google.com/file/d/1VCWn872lerG00-I1r07BI89JFfcHarwD/view?usp=sharing)], [[Training logs](https://drive.google.com/drive/folders/1xyWi3BThfZ6WUyzRGWut_cSVdHtb4oOq?usp=drive_link)] ## Highlights ### :star2: New Explicit Visual Prompts-base Tracking Framework

Framework

EVPTrack is a simple and high performance tracker. It achieves SOTA performance on multiple benchmarks by utilizing spatio-temporal and multi-scale template information. ### :star2: Strong Performance | Tracker | GOT-10K (AO) | LaSOT (AUC) | TrackingNet (AUC) | LaSOT_ext (AUC) | UAV123 (AUC) | TNL2K (AUC) | |:------------:|:------------:|:-----------:|:-----------------:|:---------------:|:------------:|:-----------:| | EVPTrack-384 | 76.6 | 72.7 | 84.4 | 53.7 | 70.9 | 59.1 | | EVPTrack-224 | 73.3 | 70.4 | 83.5 | 48.7 | 70.2 | 57.5 | ## Install the environment ``` conda create -n evptrack python=3.8 conda activate evptrack bash install.sh ``` ## Data Preparation Put the tracking datasets in ./data. It should look like: ``` ${PROJECT_ROOT} -- data -- lasot |-- airplane |-- basketball |-- bear ... -- got10k |-- test |-- train |-- val -- coco |-- annotations |-- images -- trackingnet |-- TRAIN_0 |-- TRAIN_1 ... |-- TRAIN_11 |-- TEST ``` ## Set project paths Run the following command to set paths for this project ``` python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output ``` After running this command, you can also modify paths by editing these two files ``` lib/train/admin/local.py # paths about training lib/test/evaluation/local.py # paths about testing ``` ## Training Download pre-trained [MAE HiViT-Base weights](https://drive.google.com/file/d/1VZQz4buhlepZ5akTcEvrA3a_nxsQZ8eQ/view?usp=share_link) and put it under `$PROJECT_ROOT$/pretrained_networks` (different pretrained models can also be used, see [MAE](https://github.com/facebookresearch/mae) for more details). ``` python tracking/train.py \ --script evptrack --config EVPTrack-full-224 \ --save_dir ./output \ --mode multiple --nproc_per_node 4 \ --use_wandb 0 python tracking/train.py \ --script evptrack --config EVPTrack-got-224 \ --save_dir ./output \ --mode single ``` Replace `--config` with the desired model config under `experiments/evptrack`. We use [wandb](https://github.com/wandb/client) to record detailed training logs, in case you don't want to use wandb, set `--use_wandb 0`. ## Test and Evaluation - LaSOT or other off-line evaluated benchmarks (modify `--dataset` correspondingly) ``` python tracking/test.py --tracker_param EVPTrack-full-224 --dataset lasot --threads 8 --num_gpus 4 python tracking/analysis_results.py # need to modify tracker configs and names ``` - GOT10K-test ``` python tracking/test.py --tracker_param EVPTrack-full-224 --dataset got10k --threads 8 --num_gpus 4 ``` - TrackingNet ``` python tracking/test.py --tracker_param EVPTrack-full-224 --dataset trackingnet --threads 8 --num_gpus 4 ``` ## Test FLOPs, and Speed *Note:* The speeds reported in our paper were tested on a single RTX2080Ti GPU. ``` python tracking/profile_model.py --script evptrack --config baseline ``` ## Acknowledgments * Thanks for the [OSTrack](https://github.com/botaoye/OSTrack) and [PyTracking](https://github.com/visionml/pytracking) library, which helps us to quickly implement our ideas. ## Citation If our work is useful for your research, please consider citing: ```Bibtex @inproceedings{shi2024evptrack, title={Explicit Visual Prompts for Visual Object Tracking}, author={Liangtao Shi and Bineng Zhong and Qihua Liang and Ning Li and Shengping Zhang and Xianxian Li}, booktitle={AAAI}, year={2024} } ```