# ACAM-model **Repository Path**: fs57585/ACAM-model ## Basic Information - **Project Name**: ACAM-model - **Description**: It is deep recommendation model with attribute-level co-attention - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ACAM model * Usage `python3 main.py` * structure ``` . ├── code │ ├── dataset_build.py │ ├── main.py │ ├── metrics.py │ ├── model.py │ └── train.py ├── data │ ├── movie │ │ ├── data │ │ └── pretrained_embeddings │ └── music │ ├── data │ └── pretrained_embeddings └── README.md ``` model.py:The main part of the model, it is realized by pytorch. train.py:Build model and train the parameters in the model. metrics.py:Define various evaluation functions(prec, ap, ndcg and rr). dataset_build.py:Build train set and test set for model. You can run the model on music dataset by ``` python3 --dataset music ``` You can run the model on douban movie dataset by ``` python3 --dataset movie ``` Other important parameters are explained as follows: batch_size:The amount of data for each epoch. L:The number of history records for each user. use_KGloss:Whether to use knowledge loss founction. learning_rate:The learning rate for training model. method:Which model to used. d:The dimension for embedding vectors.