# HKIPN **Repository Path**: fs57585/HKIPN ## Basic Information - **Project Name**: HKIPN - **Description**: Implementation of paper: A Hierarchical Knowledge and Interest Propagation Network for Recommender Systems - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-23 - **Last Updated**: 2021-06-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # A Hierarchical Knowledge and Interest Propagation Network for Recommender Systems This repository is the implementation of paper: > A Hierarchical Knowledge and Interest Propagation Network for Recommender Systems > > Qinghong Chen, Huobin Tan, Guangyan Lin, Ze Wang ## Required packages The code has been tested running under Python 3.6.9, with the following packages installed (along with their dependencies): - torch==1.3.0 - torchvision==0.4.1 - numpy==1.17.3 - pandas==0.25.1 - scikit-learn==0.21.3 ## Files in the folder - data/: The dataset used in the paper. Please download it at https://pan.baidu.com/s/1sw0-S6mEiRYySTZ748ItiQ , the code is 1113. - `src/`: Implementation of HKIPN. ## Perprocess the data & run After downloading the data, you need to preprocess and run by following the steps below: - Music ``` $ python preprocess.py --dataset music $ python main.py --dataset music ``` - Book ``` $ python preprocess.py --dataset book $ python main.py --dataset book ``` - Movie ``` $ python preprocess.py --dataset movie $ python main.py --dataset movie ```