# CenterNet_TensorFlow2 **Repository Path**: futureflsl/CenterNet_TensorFlow2 ## Basic Information - **Project Name**: CenterNet_TensorFlow2 - **Description**: A tensorflow2.x implementation of CenterNet. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-09 - **Last Updated**: 2020-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CenterNet_TensorFlow2 A tensorflow2.x implementation of CenterNet. ## Requirements: + Python >= 3.7 + TensorFlow >= 2.2.0rc3 + numpy + opencv-python ## Results The following are the detection results of some pictures in the PASCAL VOC 2012 dataset.
![img_1](https://github.com/calmisential/CenterNet_TensorFlow2/blob/master/assets/1.png)
![img_2](https://github.com/calmisential/CenterNet_TensorFlow2/blob/master/assets/2.png)
![img_3](https://github.com/calmisential/CenterNet_TensorFlow2/blob/master/assets/3.png) ## Usage ### Train on PASCAL VOC 2012 1. Download the [PASCAL VOC 2012 dataset](http://host.robots.ox.ac.uk/pascal/VOC/). 2. Unzip the file and place it in the 'data/datasets' folder, make sure the directory is like this : ``` |——data |——datasets |——VOCdevkit |——VOC2012 |——Annotations |——ImageSets |——JPEGImages |——SegmentationClass |——SegmentationObject ``` 3. Run **write_to_txt.py** to generate **data.txt**. 4. Run **train.py** to start training, before that, you can change the value of the parameters in **configuration.py**. ### Test on single picture 1. Change the *test_single_image_dir* in **configuration.py**. 2. Run **test.py** to test on single picture. ## Acknowledgments 1. Official PyTorch implementation of CenterNet: https://github.com/xingyizhou/CenterNet 2. A TensorFlow implementation of CenterNet: https://github.com/MioChiu/TF_CenterNet ## References 1. [Objects as Points](https://arxiv.org/abs/1904.07850)