# ssd-pytorch **Repository Path**: gaoyimm/ssd-pytorch ## Basic Information - **Project Name**: ssd-pytorch - **Description**: SSD:Single-Shot MultiBox Detector目标检测模型在Pytorch当中的实现 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2022-12-06 - **Last Updated**: 2022-12-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## SSD:Single-Shot MultiBox Detector目标检测模型在Pytorch当中的实现 --- ### 目录 1. [所需环境 Environment](#所需环境) 2. [文件下载 Download](#文件下载) 3. [训练步骤 How2train](#训练步骤) 4. [参考资料 Reference](#Reference) ### 所需环境 torch == 1.2.0 ### 文件下载 训练所需的ssd_weights.pth可以在百度云下载。 链接: https://pan.baidu.com/s/1ltXCkuSxKRJUsLi0IoBg2A 提取码: uqnw ### 训练步骤 1、本文使用VOC格式进行训练。 2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。 3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。 4、在训练前利用voc2ssd.py文件生成对应的txt。 5、再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。 ```python classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] ``` 6、就会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置。 7、在训练前需要修改model_data里面的voc_classes.txt文件,需要将classes改成你自己的classes。 8、修改utils/config.py里面的NUM_CLASSES与需要训练的种类的个数相同。运行train.py即可开始训练。 ### mAP目标检测精度计算更新 更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。 get_map文件克隆自https://github.com/Cartucho/mAP 具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw ### Reference https://github.com/pierluigiferrari/ssd_keras https://github.com/kuhung/SSD_keras