# dnn_aec_data_process **Repository Path**: gaoyongyu/dnn_aec_data_process ## Basic Information - **Project Name**: dnn_aec_data_process - **Description**: pre-process script for timit data for dnn-aec works - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-26 - **Last Updated**: 2021-08-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Timit data process for dnn acoustic echo cancellation experiments ============================== This repo is following the data setup from [Deep Learning for Acoustic Echo Cancellation in Noisy and Double-TalkScenarios](https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1484.pdf). It' a draft script, I will modify it and put all changeable configurations into a json so that it can be used more friendly. By the way, if you want to do some work in deep learning aec, I recommend using farend data from AEC-challenge and mix with other clean open source datasets. Notification ============ References: Paper: [Deep Learning for Acoustic Echo Cancellation in Noisy and Double-TalkScenarios](https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1484.pdf) DNS-CHALLENGE: [INTERSPEECH 2021 Deep Noise Suppression Challenge](https://arxiv.org/pdf/2101.01902.pdf) DNS-CHALLENGE CODE: [INTERSPEECH 2021 Deep Noise Suppression Challenge](https://github.com/microsoft/DNS-Challenge) AEC-CHALLENGE:[ICASSP 2021 ACOUSTIC ECHO CANCELLATION CHALLENGE: DATASETS, TESTINGFRAMEWORK, AND RESULTS](https://arxiv.org/pdf/2009.04972.pdf) AEC-CHALLENGE CODE:[ICASSP 2021 ACOUSTIC ECHO CANCELLATION CHALLENGE: DATASETS, TESTINGFRAMEWORK, AND RESULTS](https://github.com/microsoft/AEC-Challenge) How to use ========== 1. change __dataPath__, __noisePath__, __outPath__ and __rirPath__ according to your setups, p.s. __rirPath__ is provided from DNS-CHALLENGE where you can review above 2. python timit_pre_process.py Last Modification ============ 1. add json 2. randomly pad signal to certain length 3. add non-linear