# ProPainter **Repository Path**: ge-baoshi/ProPainter ## Basic Information - **Project Name**: ProPainter - **Description**: 开源去水印 - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2025-06-20 - **Last Updated**: 2025-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

ProPainter: Improving Propagation and Transformer for Video Inpainting

Shangchen ZhouChongyi LiKelvin C.K. ChanChen Change Loy
S-Lab, Nanyang Technological University 
ICCV 2023

⭐ If ProPainter is helpful to your projects, please help star this repo. Thanks! 🤗 :open_book: For more visual results, go checkout our project page ---
## Update - **2023.11.09**: Integrated to :man_artist: [OpenXLab](https://openxlab.org.cn/apps). Try out online demo! [![OpenXLab](https://img.shields.io/badge/Demo-%F0%9F%91%A8%E2%80%8D%F0%9F%8E%A8%20OpenXLab-blue)](https://openxlab.org.cn/apps/detail/ShangchenZhou/ProPainter) - **2023.11.09**: Integrated to :hugs: [Hugging Face](https://huggingface.co/spaces). Try out online demo! [![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/sczhou/ProPainter) - **2023.09.24**: We remove the watermark removal demos officially to prevent the misuse of our work for unethical purposes. - **2023.09.21**: Add features for memory-efficient inference. Check our [GPU memory](https://github.com/sczhou/ProPainter#-memory-efficient-inference) requirements. 🚀 - **2023.09.07**: Our code and model are publicly available. 🐳 - **2023.09.01**: This repo is created. ### TODO - [ ] Make a Colab demo. - [x] ~~Make a interactive Gradio demo.~~ - [x] ~~Update features for memory-efficient inference.~~ ## Results #### 👨🏻‍🎨 Object Removal
#### 🎨 Video Completion
## Overview ![overall_structure](assets/ProPainter_pipeline.png) ## Dependencies and Installation 1. Clone Repo ```bash git clone https://github.com/sczhou/ProPainter.git ``` 2. Create Conda Environment and Install Dependencies ```bash # create new anaconda env conda create -n propainter python=3.8 -y conda activate propainter # install python dependencies pip3 install -r requirements.txt ``` - CUDA >= 9.2 - PyTorch >= 1.7.1 - Torchvision >= 0.8.2 - Other required packages in `requirements.txt` ## Get Started ### Prepare pretrained models Download our pretrained models from [Releases V0.1.0](https://github.com/sczhou/ProPainter/releases/tag/v0.1.0) to the `weights` folder. (All pretrained models can also be automatically downloaded during the first inference.) The directory structure will be arranged as: ``` weights |- ProPainter.pth |- recurrent_flow_completion.pth |- raft-things.pth |- i3d_rgb_imagenet.pt (for evaluating VFID metric) |- README.md ``` ### 🏂 Quick test We provide some examples in the [`inputs`](./inputs) folder. Run the following commands to try it out: ```shell # The first example (object removal) python inference_propainter.py --video inputs/object_removal/bmx-trees --mask inputs/object_removal/bmx-trees_mask # The second example (video completion) python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 240 --width 432 ``` The results will be saved in the `results` folder. To test your own videos, please prepare the input `mp4 video` (or `split frames`) and `frame-wise mask(s)`. If you want to specify the video resolution for processing or avoid running out of memory, you can set the video size of `--width` and `--height`: ```shell # process a 576x320 video; set --fp16 to use fp16 (half precision) during inference. python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 320 --width 576 --fp16 ``` #### 💃🏻 Interactive Demo We also provide an interactive demo for object removal, allowing users to select any object they wish to remove from a video. You can try the demo on [Hugging Face](https://huggingface.co/spaces/sczhou/ProPainter) or run it [locally](https://github.com/sczhou/ProPainter/tree/main/web-demos/hugging_face).
Demo GIF
*Please note that the demo's interface and usage may differ from the GIF animation above. For detailed instructions, refer to the [user guide](https://github.com/sczhou/ProPainter/blob/main/web-demos/hugging_face/README.md).* ### 🚀 Memory-efficient inference Video inpainting typically requires a significant amount of GPU memory. Here, we offer various features that facilitate memory-efficient inference, effectively avoiding the Out-Of-Memory (OOM) error. You can use the following options to reduce memory usage further: - Reduce the number of local neighbors through decreasing the `--neighbor_length` (default 10). - Reduce the number of global references by increasing the `--ref_stride` (default 10). - Set the `--resize_ratio` (default 1.0) to resize the processing video. - Set a smaller video size via specifying the `--width` and `--height`. - Set `--fp16` to use fp16 (half precision) during inference. - Reduce the frames of sub-videos `--subvideo_length` (default 80), which effectively decouples GPU memory costs and video length. Blow shows the estimated GPU memory requirements for different sub-video lengths with fp32/fp16 precision: | Resolution | 50 frames | 80 frames | | :--- | :----: | :----: | | 1280 x 720 | 28G / 19G | OOM / 25G | | 720 x 480 | 11G / 7G | 13G / 8G | | 640 x 480 | 10G / 6G | 12G / 7G | | 320 x 240 | 3G / 2G | 4G / 3G | ## Dataset preparation
Dataset YouTube-VOS DAVIS
Description For training (3,471) and evaluation (508) For evaluation (50 in 90)
Images [Official Link] (Download train and test all frames) [Official Link] (2017, 480p, TrainVal)
Masks [Google Drive] [Baidu Disk] (For reproducing paper results; provided in ProPainter paper)
The training and test split files are provided in `datasets/`. For each dataset, you should place `JPEGImages` to `datasets/`. Resize all video frames to size `432x240` for training. Unzip downloaded mask files to `datasets`. The `datasets` directory structure will be arranged as: (**Note**: please check it carefully) ``` datasets |- davis |- JPEGImages_432_240 |- |- 00000.jpg |- 00001.jpg |- test_masks |- |- 00000.png |- 00001.png |- train.json |- test.json |- youtube-vos |- JPEGImages_432_240 |- |- 00000.jpg |- 00001.jpg |- test_masks |- |- 00000.png |- 00001.png |- train.json |- test.json ``` ## Training Our training configures are provided in [`train_flowcomp.json`](./configs/train_flowcomp.json) (for Recurrent Flow Completion Network) and [`train_propainter.json`](./configs/train_propainter.json) (for ProPainter). Run one of the following commands for training: ```shell # For training Recurrent Flow Completion Network python train.py -c configs/train_flowcomp.json # For training ProPainter python train.py -c configs/train_propainter.json ``` You can run the **same command** to **resume** your training. To speed up the training process, you can precompute optical flow for the training dataset using the following command: ```shell # Compute optical flow for training dataset python scripts/compute_flow.py --root_path --save_path --height 240 --width 432 ``` ## Evaluation Run one of the following commands for evaluation: ```shell # For evaluating flow completion model python scripts/evaluate_flow_completion.py --dataset --video_root --mask_root --save_results # For evaluating ProPainter model python scripts/evaluate_propainter.py --dataset --video_root --mask_root --save_results ``` The scores and results will also be saved in the `results_eval` folder. Please `--save_results` for further [evaluating temporal warping error](https://github.com/phoenix104104/fast_blind_video_consistency#evaluation). ## Citation If you find our repo useful for your research, please consider citing our paper: ```bibtex @inproceedings{zhou2023propainter, title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting}, author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change}, booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)}, year={2023} } ``` ## License #### Non-Commercial Use Only Declaration The ProPainter is made available for use, reproduction, and distribution strictly for non-commercial purposes. The code and models are licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license. For inquiries or to obtain permission for commercial use, please consult Dr. Shangchen Zhou (shangchenzhou@gmail.com). ## Projects that use ProPainter If you develop or use ProPainter in your projects, feel free to let me know. Also, please include this [ProPainter](https://github.com/sczhou/ProPainter) repo link, authorship information, and our [S-Lab license](https://github.com/sczhou/ProPainter/blob/main/LICENSE) (with link). #### Projects/Applications from the Community - Streaming ProPainter: https://github.com/osmr/propainter - Faster ProPainter: https://github.com/halfzm/faster-propainter - ProPainter WebUI: https://github.com/halfzm/ProPainter-Webui - ProPainter ComfyUI: https://github.com/daniabib/ComfyUI_ProPainter_Nodes - Cutie (video segmentation): https://github.com/hkchengrex/Cutie - Cinetransfer (character transfer): https://virtualfilmstudio.github.io/projects/cinetransfer - Motionshop (character transfer): https://aigc3d.github.io/motionshop #### PyPI - propainter: https://pypi.org/project/propainter - pytorchcv: https://pypi.org/project/pytorchcv ## Contact If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com. ## Acknowledgement This code is based on [E2FGVI](https://github.com/MCG-NKU/E2FGVI) and [STTN](https://github.com/researchmm/STTN). Some code are brought from [BasicVSR++](https://github.com/ckkelvinchan/BasicVSR_PlusPlus). Thanks for their awesome works. Special thanks to [Yihang Luo](https://github.com/Luo-Yihang) for his valuable contributions to build and maintain the Gradio demos for ProPainter.