# dinov3 **Repository Path**: gengumeng/dinov3 ## Basic Information - **Project Name**: dinov3 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-27 - **Last Updated**: 2025-11-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 🆕 [2025-09-17] :fire: DINOv3 backbones are now supported by the [PyTorch Image Models / timm](https://github.com/huggingface/pytorch-image-models/) library starting with version [1.0.20](https://github.com/huggingface/pytorch-image-models/releases/tag/v1.0.20) [2025-08-29] DINOv3 backbones are [supported](https://huggingface.co/docs/transformers/model_doc/dinov3) by released versions of the Hugging Face [Transformers](https://huggingface.co/docs/transformers/index) library starting with version [4.56.0](https://github.com/huggingface/transformers/releases/tag/v4.56.0) [2025-08-14] DINOv3 backbones are now available in [Hugging Face Hub](https://huggingface.co/collections/facebook/dinov3-68924841bd6b561778e31009) and [supported](https://huggingface.co/docs/transformers/model_doc/dinov3) by the [development](https://github.com/huggingface/transformers/) version of the Hugging Face [Transformers](https://huggingface.co/docs/transformers/index) library # DINOv3 🦖🦖🦖 **[Meta AI Research, FAIR](https://ai.meta.com/research/)** Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab,
Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa,
Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang,
Timothée Darcet, Théo Moutakanni, Leonel Sentana, Claire Roberts,
Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie,
Julien Mairal, Hervé Jégou, Patrick Labatut, Piotr Bojanowski [ :scroll: [`Paper`](https://arxiv.org/abs/2508.10104)] [ :newspaper: [`Blog`](https://ai.meta.com/blog/dinov3-self-supervised-vision-model/)] [ :globe_with_meridians: [`Website`](https://ai.meta.com/dinov3/)] [ :book: [`BibTeX`](#citing-dinov3)] Reference PyTorch implementation and models for DINOv3. For details, see the **[DINOv3](https://arxiv.org/abs/2508.10104)** paper. ## Overview
market High-resolution dense features.
We visualize the cosine similarity maps obtained with DINOv3 output features
between the patches marked with a red cross and all other patches.

An extended family of versatile vision foundation models producing high-quality dense features and achieving outstanding performance on various vision tasks including outperforming the specialized state of the art across a broad range of settings, without fine-tuning ## Pretrained models :information_source: Please follow the link provided below to get access to all the model weights: once accepted, an e-mail will be sent with the complete list of URLs pointing to all the available model weights (both backbones and adapters). These URLs can then be used to either: - download the model or adapter weights to a local filesystem and point `torch.hub.load()` to these local weights via the `weights` or `backbone_weights` parameters, or - directly invoke `torch.hub.load()` to download and load a backbone or an adapter from its URL via also the `weights` or `backbone_weights` parameters. See the example code snippets below. :warning: Please use `wget` instead of a web browser to download the weights. ViT models pretrained on web dataset (LVD-1689M):
Model Parameters Pretraining
Dataset
Download
ViT-S/16 distilled 21M LVD-1689M [link]
ViT-S+/16 distilled 29M LVD-1689M [link]
ViT-B/16 distilled 86M LVD-1689M [link]
ViT-L/16 distilled 300M LVD-1689M [link]
ViT-H+/16 distilled 840M LVD-1689M [link]
ViT-7B/16 6,716M LVD-1689M [link]
ConvNeXt models pretrained on web dataset (LVD-1689M):
Model Parameters Pretraining
Dataset
Download
ConvNeXt Tiny 29M LVD-1689M [link]
ConvNeXt Small 50M LVD-1689M [link]
ConvNeXt Base 89M LVD-1689M [link]
ConvNeXt Large 198M LVD-1689M [link]
ViT models pretrained on satellite dataset (SAT-493M):
Model Parameters Pretraining
Dataset
Download
ViT-L/16 distilled 300M SAT-493M [link]
ViT-7B/16 6,716M SAT-493M [link]
### Pretrained backbones (via PyTorch [Hub](https://docs.pytorch.org/docs/stable/hub.html)) Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install PyTorch (the only required dependency for loading the model). Installing PyTorch with CUDA support is strongly recommended. ```python import torch REPO_DIR = # DINOv3 ViT models pretrained on web images dinov3_vits16 = torch.hub.load(REPO_DIR, 'dinov3_vits16', source='local', weights=) dinov3_vits16plus = torch.hub.load(REPO_DIR, 'dinov3_vits16plus', source='local', weights=) dinov3_vitb16 = torch.hub.load(REPO_DIR, 'dinov3_vitb16', source='local', weights=) dinov3_vitl16 = torch.hub.load(REPO_DIR, 'dinov3_vitl16', source='local', weights=) dinov3_vith16plus = torch.hub.load(REPO_DIR, 'dinov3_vith16plus', source='local', weights=) dinov3_vit7b16 = torch.hub.load(REPO_DIR, 'dinov3_vit7b16', source='local', weights=) # DINOv3 ConvNeXt models pretrained on web images dinov3_convnext_tiny = torch.hub.load(REPO_DIR, 'dinov3_convnext_tiny', source='local', weights=) dinov3_convnext_small = torch.hub.load(REPO_DIR, 'dinov3_convnext_small', source='local', weights=) dinov3_convnext_base = torch.hub.load(REPO_DIR, 'dinov3_convnext_base', source='local', weights=) dinov3_convnext_large = torch.hub.load(REPO_DIR, 'dinov3_convnext_large', source='local', weights=) # DINOv3 ViT models pretrained on satellite imagery dinov3_vitl16 = torch.hub.load(REPO_DIR, 'dinov3_vitl16', source='local', weights=) dinov3_vit7b16 = torch.hub.load(REPO_DIR, 'dinov3_vit7b16', source='local', weights=) ``` ### Pretrained backbones (via Hugging Face [Transformers](https://huggingface.co/docs/transformers/)) All the backbones are available in the [DINOv3](https://huggingface.co/collections/facebook/dinov3-68924841bd6b561778e31009) collection on Hugging Face Hub and supported via the Hugging Face [Transformers](https://huggingface.co/docs/transformers/index) library (with released packages from version 4.56.0). Please refer to the corresponding documentation for usage, but below is a short example that demonstrates how to obtain an image embedding with either [Pipeline] or the [AutoModel] class. ```python from transformers import pipeline from transformers.image_utils import load_image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" image = load_image(url) feature_extractor = pipeline( model="facebook/dinov3-convnext-tiny-pretrain-lvd1689m", task="image-feature-extraction", ) features = feature_extractor(image) ``` ```python import torch from transformers import AutoImageProcessor, AutoModel from transformers.image_utils import load_image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = load_image(url) pretrained_model_name = "facebook/dinov3-convnext-tiny-pretrain-lvd1689m" processor = AutoImageProcessor.from_pretrained(pretrained_model_name) model = AutoModel.from_pretrained( pretrained_model_name, device_map="auto", ) inputs = processor(images=image, return_tensors="pt").to(model.device) with torch.inference_mode(): outputs = model(**inputs) pooled_output = outputs.pooler_output print("Pooled output shape:", pooled_output.shape) ``` where `model` and `pretrained_model_name` above can be one of: - `facebook/dinov3-vits16-pretrain-lvd1689m` - `facebook/dinov3-vits16plus-pretrain-lvd1689m` - `facebook/dinov3-vitb16-pretrain-lvd1689m` - `facebook/dinov3-vitl16-pretrain-lvd1689m` - `facebook/dinov3-vith16plus-pretrain-lvd1689m` - `facebook/dinov3-vit7b16-pretrain-lvd1689m` - `facebook/dinov3-convnext-base-pretrain-lvd1689m` - `facebook/dinov3-convnext-large-pretrain-lvd1689m` - `facebook/dinov3-convnext-small-pretrain-lvd1689m` - `facebook/dinov3-convnext-tiny-pretrain-lvd1689m` - `facebook/dinov3-vitl16-pretrain-sat493m` - `facebook/dinov3-vit7b16-pretrain-sat493m` ### Image transforms For models using the LVD-1689M weights (pretrained on web images), please use the following transform (standard ImageNet evaluation transform): ```python import torchvision from torchvision.transforms import v2 def make_transform(resize_size: int = 256): to_tensor = v2.ToImage() resize = v2.Resize((resize_size, resize_size), antialias=True) to_float = v2.ToDtype(torch.float32, scale=True) normalize = v2.Normalize( mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), ) return v2.Compose([to_tensor, resize, to_float, normalize]) ``` For models using the SAT-493M weights (pretrained on satellite imagery), please use the following transform: ```python import torchvision from torchvision.transforms import v2 def make_transform(resize_size: int = 256): to_tensor = v2.ToImage() resize = v2.Resize((resize_size, resize_size), antialias=True) to_float = v2.ToDtype(torch.float32, scale=True) normalize = v2.Normalize( mean=(0.430, 0.411, 0.296), std=(0.213, 0.156, 0.143), ) return v2.Compose([to_tensor, resize, to_float, normalize]) ``` ### Pretrained heads - Image classification
Backbone Pretraining
Dataset
Head
Dataset
Download
ViT-7B/16 LVD-1689M ImageNet [link]
The (full) classifier models can be loaded via PyTorch Hub: ```python import torch # DINOv3 dinov3_vit7b16_lc = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_lc', source="local", weights=, backbone_weights=) ``` ### Pretrained heads - Depther trained on SYNTHMIX dataset
Backbone Pretraining
Dataset
Head
Dataset
Download
ViT-7B/16 LVD-1689M SYNTHMIX [link]
```python depther = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_dd', source="local", weights=, backbone_weights=) ``` Full example code of depther on an image ```python from PIL import Image import torch from torchvision.transforms import v2 import matplotlib.pyplot as plt from matplotlib import colormaps def get_img(): import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image def make_transform(resize_size: int | list[int] = 768): to_tensor = v2.ToImage() resize = v2.Resize((resize_size, resize_size), antialias=True) to_float = v2.ToDtype(torch.float32, scale=True) normalize = v2.Normalize( mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), ) return v2.Compose([to_tensor, resize, to_float, normalize]) depther = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_dd', source="local", weights=, backbone_weights=) img_size = 1024 img = get_img() transform = make_transform(img_size) with torch.inference_mode(): with torch.autocast('cuda', dtype=torch.bfloat16): batch_img = transform(img)[None] batch_img = batch_img depths = depther(batch_img) plt.figure(figsize=(12, 6)) plt.subplot(121) plt.imshow(img) plt.axis("off") plt.subplot(122) plt.imshow(depths[0,0].cpu(), cmap=colormaps["Spectral"]) plt.axis("off") ``` #### Reproduce paper results Make sure the NYU dataset is setup following [this](DATASETS.md#depth-estimation-on-nyu). Launch the following to reproduce our paper's depth estimation results on NYUv2 with the pretrained Depther trained on SYNTHMIX: ```shell PYTHONPATH=. python -m dinov3.run.submit dinov3/eval/depth/run.py \ config=dinov3/eval/depth/configs/config-nyu-synthmix-dpt-inference.yaml \ datasets.root= \ load_from=dinov3_vit7b16_dd \ --output-dir ``` Notes: - if you want to launch the code without dinov3.run.submit, you can do so using python directly or torchrun: ```shell PYTHONPATH=. python dinov3/eval/depth/run.py \ config=dinov3/eval/depth/configs/config-nyu-synthmix-dpt-inference.yaml \ datasets.root= \ load_from=dinov3_vit7b16_dd \ output_dir= ``` - One can also save prediction results using `result_config.save_results=true`. #### Linear depth estimation on NYUv2 Depth ```shell PYTHONPATH=. python -m dinov3.run.submit dinov3/eval/depth/run.py \ model.dino_hub=dinov3_vit7b16 \ config=dinov3/eval/depth/configs/config-nyu.yaml \ datasets.root= \ --output-dir ``` After the job completes, you will find in the output path directory you specified - `depth_config.yaml` that contains the config you trained the model with; - `model_final.pth`, the final linear head checkpoint at the end of training; and - `results-depth.csv` with the final metrics. ### Pretrained heads - Detector trained on COCO2017 dataset
Backbone Pretraining
Dataset
Head
Dataset
Download
ViT-7B/16 LVD-1689M COCO2017 [link]
```python detector = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_de', source="local", weights=, backbone_weights=) ``` ### Pretrained heads - Segmentor trained on ADE20K dataset
Backbone Pretraining
Dataset
Head
Dataset
Download
ViT-7B/16 LVD-1689M ADE20K [link]
```python segmentor = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_ms', source="local", weights=, backbone_weights=) ``` Example command to run a full inference on ADE20K with the provided segmentor (ViT-7B + M2F): ```shell PYTHONPATH=. python -m dinov3.run.submit dinov3/eval/segmentation/run.py \ config=dinov3/eval/segmentation/configs/config-ade20k-m2f-inference.yaml \ datasets.root= \ load_from=dinov3_vit7b16_ms \ --output-dir ``` Full example code of segmentator on an image ```python import sys sys.path.append(REPO_DIR) from PIL import Image import torch from torchvision import transforms import matplotlib.pyplot as plt from matplotlib import colormaps from functools import partial from dinov3.eval.segmentation.inference import make_inference def get_img(): import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image def make_transform(resize_size: int | list[int] = 768): to_tensor = v2.ToImage() resize = v2.Resize((resize_size, resize_size), antialias=True) to_float = v2.ToDtype(torch.float32, scale=True) normalize = v2.Normalize( mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), ) return v2.Compose([to_tensor, resize, to_float, normalize]) segmentor = torch.hub.load(REPO_DIR, 'dinov3_vit7b16_ms', source="local", weights=, backbone_weights=) img_size = 896 img = get_img() transform = make_transform(img_size) with torch.inference_mode(): with torch.autocast('cuda', dtype=torch.bfloat16): batch_img = transform(img)[None] pred_vit7b = segmentor(batch_img) # raw predictions # actual segmentation map segmentation_map_vit7b = make_inference( batch_img, segmentor, inference_mode="slide", decoder_head_type="m2f", rescale_to=(img.size[-1], img.size[-2]), n_output_channels=150, crop_size=(img_size, img_size), stride=(img_size, img_size), output_activation=partial(torch.nn.functional.softmax, dim=1), ).argmax(dim=1, keepdim=True) plt.figure(figsize=(12, 6)) plt.subplot(121) plt.imshow(img) plt.axis("off") plt.subplot(122) plt.imshow(segmentation_map_vit7b[0,0].cpu(), cmap=colormaps["Spectral"]) plt.axis("off") ``` ### Pretrained heads - Zero-shot tasks with `dino.txt`
Backbone Download
ViT-L/16 distilled [link], vocabulary, vocabulary license
The (full) dino.txt model can be loaded via PyTorch Hub: ```python import torch # DINOv3 dinov3_vitl16_dinotxt_tet1280d20h24l, tokenizer = torch.hub.load(REPO_DIR, 'dinov3_vitl16_dinotxt_tet1280d20h24l', weights=, backbone_weights=) ``` ## Installation The training and evaluation code requires PyTorch version >= 2.7.1 as well as a few other 3rd party packages. Note that the code has only been tested with the specified versions and also expects a Linux environment. To setup all the required dependencies for training and evaluation, please follow the instructions below: *[micromamba](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html)* **(Recommended)** - Clone the repository and then create and activate a `dinov3` conda environment using the provided environment definition: ```shell micromamba env create -f conda.yaml micromamba activate dinov3 ``` ## Getting started Several notebooks are provided to get started applying DINOv3: - [PCA of patch features](notebooks/pca.ipynb): display the PCA of DINOv3 patch features on a foreground object (rainbow visualizations from the paper) [[Run in Google Colab]](https://colab.research.google.com/github/facebookresearch/dinov3/blob/main/notebooks/pca.ipynb) - [Foreground segmentation](notebooks/foreground_segmentation.ipynb): train a linear foreground segmentation model based on DINOv3 features [[Run in Google Colab]](https://colab.research.google.com/github/facebookresearch/dinov3/blob/main/notebooks/foreground_segmentation.ipynb) - [Dense and sparse matching](notebooks/dense_sparse_matching.ipynb): match patches from objects on two different images based on DINOv3 features [[Run in Google Colab]](https://colab.research.google.com/github/facebookresearch/dinov3/blob/main/notebooks/dense_sparse_matching.ipynb) - [Segmentation tracking](notebooks/segmentation_tracking.ipynb): video segmentation tracking using a non-parametric method based on DINOv3 features [[Run in Google Colab]](https://colab.research.google.com/github/facebookresearch/dinov3/blob/main/notebooks/segmentation_tracking.ipynb) - [Zero-shot segmentation with DINOv3-based dino.txt](notebooks/dinotxt_segmentation_inference.ipynb): compute the open-vocabulary segmentation results with dino.txt strategy. ## Data preparation ### ImageNet-1k The root directory of the dataset should hold the following contents: - `/test/ILSVRC2012_test_00000001.JPEG` - `/test/[..]` - `/test/ILSVRC2012_test_00100000.JPEG` - `/train/n01440764/n01440764_10026.JPEG` - `/train/[...]` - `/train/n15075141/n15075141_9993.JPEG` - `/val/n01440764/ILSVRC2012_val_00000293.JPEG` - `/val/[...]` - `/val/n15075141/ILSVRC2012_val_00049174.JPEG` - `/labels.txt` The provided dataset implementation expects a few additional metadata files to be present under the extra directory: - `/class-ids-TRAIN.npy` - `/class-ids-VAL.npy` - `/class-names-TRAIN.npy` - `/class-names-VAL.npy` - `/entries-TEST.npy` - `/entries-TRAIN.npy` - `/entries-VAL.npy` These metadata files can be generated (once) with the following lines of Python code: ```python from dinov3.data.datasets import ImageNet for split in ImageNet.Split: dataset = ImageNet(split=split, root="", extra="") dataset.dump_extra() ``` Note that the root and extra directories do not have to be distinct directories. ### ImageNet-22k Please adapt the [dataset class](dinov3/data/datasets/image_net_22k.py) to match your local setup.
:warning: To execute the commands provided in the next sections for training and evaluation, the `dinov3` package should be included in the Python module search path, i.e. simply prefix the command to run with `PYTHONPATH=.`. ## Training ### Fast setup: training DINOv3 ViT-L/16 on ImageNet-1k Run DINOv3 pre-training on 4 H100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit: ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \ --nodes 4 \ --config-file dinov3/configs/train/vitl_im1k_lin834.yaml \ --output-dir \ train.dataset_path=ImageNet22k:root=:extra= ``` Training time is approximately 14 hours and the resulting checkpoint should reach 82.0% on k-NN eval and 83.5% on linear eval. The training code saves the weights of the teacher in the eval folder every 12500 iterations for evaluation. ### Exact DINOv3 setup: training DINOv3 ViT-7B/16 DINOv3 ViT-7B/16 is trained on a private dataset. The training involves 3 stages: - Pretraining - Gram anchoring - High resolution adaptation #### Pretraining Launch DINOV3 ViT-7B/16 pretraining on 32 nodes (256 GPUs) in a SLURM cluster environment with submitit. ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \ --nodes 32 \ --config-file dinov3/configs/train/dinov3_vit7b16_pretrain.yaml \ --output-dir \ train.dataset_path=:root=:extra= ``` #### Gram anchoring ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \ --nodes 32 \ --config-file dinov3/configs/train/dinov3_vit7b16_gram_anchor.yaml \ --output-dir \ train.dataset_path=:root=:extra= \ gram.ckpt= ``` #### High-resolution adaptation ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \ --nodes 32 \ --config-file dinov3/configs/train/dinov3_vit7b16_high_res_adapt.yaml \ --output-dir \ train.dataset_path=:root=:extra= \ gram.ckpt= \ student.resume_from_teacher_chkpt= ``` ## Multi-distillation ### Test setup: ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/train/train.py \ --nodes 1 \ --config-file dinov3/configs/train/multi_distillation_test.yaml \ --output-dir \ --multi-distillation \ train.dataset_path=:root=:extra= ``` ## Evaluation The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node: ### Logistic regression classification on ImageNet-1k ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/log_regression.py \ model.config_file=/config.yaml \ model.pretrained_weights=/teacher_checkpoint.pth \ output_dir= \ train.dataset=ImageNet:split=TRAIN:root=:extra= \ eval.test_dataset=ImageNet:split=VAL:root=:extra= ``` ### k-NN classification on ImageNet-1k ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/knn.py \ model.config_file=/config.yaml \ model.pretrained_weights=/teacher_checkpoint.pth \ output_dir= \ train.dataset=ImageNet:split=TRAIN:root=:extra= \ eval.test_dataset=ImageNet:split=VAL:root=:extra= ``` ### Linear classification with data augmentation on ImageNet-1k ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/linear.py \ model.config_file=/config.yaml \ model.pretrained_weights=/teacher_checkpoint.pth \ output_dir= \ train.dataset=ImageNet:split=TRAIN:root=:extra= \ train.val_dataset=ImageNet:split=VAL:root=:extra= ``` ### Linear segmentation with data augmentation on ADE20K ```shell PYTHONPATH=. python -m dinov3.run.submit dinov3/eval/segmentation/run.py \ model.dino_hub=dinov3_vit7b16 \ config=dinov3/eval/segmentation/configs/config-ade20k-linear-training.yaml \ datasets.root= \ --output-dir ``` After the job completes, you will find in the output path directory you specified - `segmentation_config.yaml` that contains the config you trained the model with; - `model_final.pth`, the final linear head checkpoint at the end of training; and - `results-semantic-segmentation.csv` with the final metrics. ### Text alignment on DINOv3 using dino.txt Text alignment can be done following the method from `dino.txt` aka [DINOv2 Meets Text](https://arxiv.org/abs/2412.16334). ```shell PYTHONPATH=${PWD} python -m dinov3.run.submit dinov3/eval/text/train_dinotxt.py \ --nodes 4 \ # An example config for text alignment is here: dinov3/eval/text/configs/dinov3_vitl_text.yaml \ trainer_config_file="" \ output-dir= ``` Launching the above trains text alignment on 4 nodes with 8 gpus each (32 gpus in total). Please note that the text alignment model in the DINOv3 paper was trained on a private dataset and here we have given an example config in ```dinov3/eval/text/configs/dinov3_vitl_text.yaml``` using ```CocoCaptions``` dataset for illustration purposes. Please adapt the provided ```CocoCaptions``` dataset class, the dataset can be found [here](https://www.kaggle.com/datasets/nikhil7280/coco-image-caption) ## License DINOv3 code and model weights are released under the DINOv3 License. See [LICENSE.md](LICENSE.md) for additional details. ## Contributing See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md). ## Citing DINOv3 If you find this repository useful, please consider giving a star :star: and citation :t-rex:: ``` @misc{simeoni2025dinov3, title={{DINOv3}}, author={Sim{\'e}oni, Oriane and Vo, Huy V. and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{\"e}l and Massa, Francisco and Haziza, Daniel and Wehrstedt, Luca and Wang, Jianyuan and Darcet, Timoth{\'e}e and Moutakanni, Th{\'e}o and Sentana, Leonel and Roberts, Claire and Vedaldi, Andrea and Tolan, Jamie and Brandt, John and Couprie, Camille and Mairal, Julien and J{\'e}gou, Herv{\'e} and Labatut, Patrick and Bojanowski, Piotr}, year={2025}, eprint={2508.10104}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.10104}, } ```