# Android-MobileFaceNet-MTCNN-FaceAntiSpoofing **Repository Path**: ghlgelong/Android-MobileFaceNet-MTCNN-FaceAntiSpoofing ## Basic Information - **Project Name**: Android-MobileFaceNet-MTCNN-FaceAntiSpoofing - **Description**: Use tensorflow Lite on Android platform, integrated face detection (MTCNN), face anti spoofing (CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing) and face comparison (MobileFaceNet use InsightFace loss) - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-02-04 - **Last Updated**: 2024-09-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MobileFaceNet-Android This project includes three models. MTCNN(pnet.tflite, rnet.tflite, onet.tflite), input: one Bitmap, output: Box. Use this model to detect faces from an image. FaceAntiSpoofing(FaceAntiSpoofing.tflite), input: one Bitmap, output: float score. Use this model to determine whether the image is an attack. MobileFaceNet(MobileFaceNet.tflite), input: two Bitmaps, output: float score. Use this model to judge whether two face images are one person. iOS platform implementation: https://github.com/syaringan357/iOS-MobileFaceNet-MTCNN-FaceAntiSpoofing # References https://github.com/vcvycy/MTCNN4Android This project is the Android implementaion of MTCNN face detection. https://github.com/davidsandberg/facenet Use the MTCNN here to convert .tflite, so that you can adapt to any shape. https://github.com/jiangxiluning/facenet_mtcnn_to_mobile Here's how to convert .tflite. https://github.com/yaojieliu/CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing Face Anti-spoofing. I trained FaceAntiSpoofing.tflite, which only supports print attack and replay attack. If you have other requirements, please use this source code to retrain. https://github.com/sirius-ai/MobileFaceNet_TF Use this model for face comparison on mobile phones because it is very small. # BUILD After putting .tflite in your assets directory, remember to add this code to your gradle: aaptOptions {   noCompress "tflite" } # SCREEN SHOT