# Android-MobileFaceNet-MTCNN-FaceAntiSpoofing
**Repository Path**: ghlgelong/Android-MobileFaceNet-MTCNN-FaceAntiSpoofing
## Basic Information
- **Project Name**: Android-MobileFaceNet-MTCNN-FaceAntiSpoofing
- **Description**: Use tensorflow Lite on Android platform, integrated face detection (MTCNN), face anti spoofing (CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing) and face comparison (MobileFaceNet use InsightFace loss)
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-02-04
- **Last Updated**: 2024-09-12
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# MobileFaceNet-Android
This project includes three models.
MTCNN(pnet.tflite, rnet.tflite, onet.tflite), input: one Bitmap, output: Box. Use this model to detect faces from an image.
FaceAntiSpoofing(FaceAntiSpoofing.tflite), input: one Bitmap, output: float score. Use this model to determine whether the image is an attack.
MobileFaceNet(MobileFaceNet.tflite), input: two Bitmaps, output: float score. Use this model to judge whether two face images are one person.
iOS platform implementation: https://github.com/syaringan357/iOS-MobileFaceNet-MTCNN-FaceAntiSpoofing
# References
https://github.com/vcvycy/MTCNN4Android
This project is the Android implementaion of MTCNN face detection.
https://github.com/davidsandberg/facenet
Use the MTCNN here to convert .tflite, so that you can adapt to any shape.
https://github.com/jiangxiluning/facenet_mtcnn_to_mobile
Here's how to convert .tflite.
https://github.com/yaojieliu/CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing
Face Anti-spoofing. I trained FaceAntiSpoofing.tflite, which only supports print attack and replay attack. If you have other requirements, please use this source code to retrain.
https://github.com/sirius-ai/MobileFaceNet_TF
Use this model for face comparison on mobile phones because it is very small.
# BUILD
After putting .tflite in your assets directory, remember to add this code to your gradle:
aaptOptions {
  noCompress "tflite"
}
# SCREEN SHOT
