# Realtime-Fall-Detection-for-RNN
**Repository Path**: gitdream/Realtime-Fall-Detection-for-RNN
## Basic Information
- **Project Name**: Realtime-Fall-Detection-for-RNN
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2019-07-22
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Real-time Fall Detection for RNN(AFD-RNN)
result picture illustrate:
- The red,green,blue lines is acceleration sensor's x,y,z data。
- In the picture ,"correct" is the ground truth,"predict" is AFD-RNN network predict data
- Fall1、Fall2、Fall3 and Fall4 are represent Forward-lying,Front-knees-lying,Back-sitting-chair,Sideward-lying
## AFD-RNN using RNN
The sensors(acceleration and gyroscope sensor) is realtime to collect data,so we using rnn to detect the people movement.
## Requirenment
- TensorFlow >= 1.4
- python3
- matplotlib
## Class
Sitting,standing,stand to sit,sit to stand,upstairs,downstairs,lying,jumping,joging,walking and fall.
## Train and test
### 1.Train data
- The data collect frequence is 50Hz
- Need acceleration and gyroscope sensor
### 2.Before training
Put the train data to ./dataset/train/,and use kalman filter to handle the data.
python utils.py
### 3.Training
python train_rnn.py
## 4.Testing
Put the test data to ./dataset/test/,and use kalman filter to handle the data.
python run_rnn.py
## Dataset
We using public dataset [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact) to train and test our net.
I upload the dataset at [Baidu网盘](https://pan.baidu.com/s/1arZMNPs1GzWrQf4beJFCSQ),if you cant download from [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact),you can try this
The final accuracy is 98.78%