# Realtime-Fall-Detection-for-RNN **Repository Path**: gitdream/Realtime-Fall-Detection-for-RNN ## Basic Information - **Project Name**: Realtime-Fall-Detection-for-RNN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2019-07-22 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Real-time Fall Detection for RNN(AFD-RNN)

result picture illustrate: - The red,green,blue lines is acceleration sensor's x,y,z data。 - In the picture ,"correct" is the ground truth,"predict" is AFD-RNN network predict data - Fall1、Fall2、Fall3 and Fall4 are represent Forward-lying,Front-knees-lying,Back-sitting-chair,Sideward-lying ## AFD-RNN using RNN The sensors(acceleration and gyroscope sensor) is realtime to collect data,so we using rnn to detect the people movement. ## Requirenment - TensorFlow >= 1.4 - python3 - matplotlib ## Class Sitting,standing,stand to sit,sit to stand,upstairs,downstairs,lying,jumping,joging,walking and fall. ## Train and test ### 1.Train data - The data collect frequence is 50Hz - Need acceleration and gyroscope sensor ### 2.Before training Put the train data to ./dataset/train/,and use kalman filter to handle the data. python utils.py ### 3.Training python train_rnn.py ## 4.Testing Put the test data to ./dataset/test/,and use kalman filter to handle the data. python run_rnn.py ## Dataset We using public dataset [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact) to train and test our net. I upload the dataset at [Baidu网盘](https://pan.baidu.com/s/1arZMNPs1GzWrQf4beJFCSQ),if you cant download from [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact),you can try this The final accuracy is 98.78%