# Caffe-YOLOv3-Windows **Repository Path**: glgoo/Caffe-YOLOv3-Windows ## Basic Information - **Project Name**: Caffe-YOLOv3-Windows - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-01-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # caffe-yolov3-windows A caffe implementation of MobileNet-YOLO detection network , first train on COCO trainval35k then fine-tune on 07+12 , test on VOC2007 Network|mAP|Resolution|Download|NetScope|Inference time (GTX 1080)|Inference time (i5-4440) :---:|:---:|:---:|:---:|:---:|:---:|:---: MobileNet-YOLOv3-Lite|0.747|320|[caffemodel](https://github.com/eric612/MobileNet-YOLO/tree/master/models/yolov3)|[graph](http://ethereon.github.io/netscope/#/gist/816d4d061c77d42246c5c9d49c4cbcf4)|6 ms|150 ms MobileNet-YOLOv3-Lite|0.757|416|[caffemodel](https://github.com/eric612/MobileNet-YOLO/tree/master/models/yolov3)|[graph](http://ethereon.github.io/netscope/#/gist/816d4d061c77d42246c5c9d49c4cbcf4)|11 ms|280 ms * the [benchmark](https://github.com/eric612/MobileNet-YOLO/tree/master/benchmark) of cpu performance on Tencent/ncnn framework * the deploy model was made by [merge_bn.py](https://github.com/chuanqi305/MobileNet-SSD/blob/master/merge_bn.py) , or you can try my custom [version](https://github.com/eric612/MobileNet-YOLO/tree/master/examples/merge_bn) * bn_model download [here](https://drive.google.com/file/d/1jB-JvuoMlLHvAhefGCwLGh_oBldcsfW3/view?usp=sharing) ## Linux Version [MobileNet-YOLO](https://github.com/eric612/MobileNet-YOLO) ## Performance Compare with [YOLO](https://pjreddie.com/darknet/yolo/) , (IOU 0.5) Network|mAP|Weight size|Resolution|NetScope :---:|:---:|:---:|:---:|:---: [MobileNet-YOLOv3-Lite](https://github.com/eric612/MobileNet-YOLO/tree/master/models/yolov3_coco)|34.0*|[21.5 mb](https://drive.google.com/file/d/1bXZtB_wZBu1kOeagYtZgsjLq2CX0BGFD/view?usp=sharing)|320|[graph](http://ethereon.github.io/netscope/#/gist/b65f6b955e99c7d4c29a4b8008669f90)| [MobileNet-YOLOv3-Lite](https://github.com/eric612/MobileNet-YOLO/tree/master/models/yolov3_coco)|37.3*|[21.5 mb](https://drive.google.com/file/d/1bXZtB_wZBu1kOeagYtZgsjLq2CX0BGFD/view?usp=sharing)|416|[graph](http://ethereon.github.io/netscope/#/gist/b65f6b955e99c7d4c29a4b8008669f90)| [MobileNet-YOLOv3](https://github.com/eric612/MobileNet-YOLO/tree/master/models/yolov3_coco)|40.3*|[22.5 mb](https://drive.google.com/file/d/1G0FeQ7_ETc3zPn5HayhKi8Dz1-I5hU--/view?usp=sharing)|416|[graph](http://ethereon.github.io/netscope/#/gist/0ec45a4ca896553a20f9f9c16e80149f)| YOLOv3-Tiny|33.1|33.8 mb|416 * (*) testdev-2015 server was closed , here use coco 2014 minival ### Oringinal darknet-yolov3 [Converter](https://github.com/eric612/MobileNet-YOLO/tree/master/models/darknet_yolov3) test on coco_minival_lmdb (IOU 0.5) Network|mAP|Resolution|Download|NetScope| :---:|:---:|:---:|:---:|:---: yolov3|54.4|416|[caffemodel](https://drive.google.com/file/d/12nLE6GtmwZxDiulwdEmB3Ovj5xx18Nnh/view?usp=sharing)|[graph](http://ethereon.github.io/netscope/#/gist/59c75a50e5b91d6dd80a879df3cfaf55) yolov3-spp|59.3|608|[caffemodel](https://drive.google.com/file/d/17b5wsR9tzbdrRnyL_iFEvofJ8jCmQ1ff/view?usp=sharing)|[graph](http://ethereon.github.io/netscope/#/gist/71edbfacf4d39c56f2d82cbcb739ae38) ## Other models You can find non-depthwise convolution network here , [Yolo-Model-Zoo](https://github.com/eric612/Yolo-Model-Zoo) network|mAP|resolution|macc|param| :---:|:---:|:---:|:---:|:---:| PVA-YOLOv3|0.703|416|2.55G|4.72M| Pelee-YOLOv3|0.703|416|4.25G|3.85M| ### Configuring and Building Caffe #### Requirements - Visual Studio 2013 or 2015 - [CMake](https://cmake.org/) 3.4 or higher (Visual Studio and [Ninja](https://ninja-build.org/) generators are supported) - Anaconda The build step was the same as [MobileNet-SSD-windows](https://github.com/eric612/MobileNet-SSD-windows) ``` > cd $caffe_root > script/build_win.cmd ``` ### Mobilenet-YOLO Demo ``` > cd $caffe_root/ > examples\demo_yolo_lite.cmd ``` If load success , you can see the image window like this ![alt tag](00002.jpg) ### Trainning Prepare Download [lmdb](https://drive.google.com/open?id=19pBP1NwomDvm43xxgDaRuj_X4KubwuCZ) Unzip into $caffe_root/ Please check the path exist "$caffe_root\examples\VOC0712\VOC0712_trainval_lmdb" ### Trainning Mobilenet-YOLOv3 ``` > cd $caffe_root/ > examples\train_yolov3_lite.cmd ``` ## Reference > https://github.com/weiliu89/caffe/tree/ssd > https://pjreddie.com/darknet/yolo/ > https://github.com/gklz1982/caffe-yolov2 > https://github.com/duangenquan/YoloV2NCS > https://github.com/eric612/Vehicle-Detection > https://github.com/eric612/MobileNet-SSD-windows ## License and Citation Please cite MobileNet-YOLO in your publications if it helps your research: @article{MobileNet-YOLO, Author = {eric612,Avisonic}, Year = {2018} }