# ddos **Repository Path**: glintfreedom/ddos ## Basic Information - **Project Name**: ddos - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-22 - **Last Updated**: 2024-06-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Machine and Deep Learning for DDoS Detection ### Marcos V. O. Assis (mvoassis@gmail.com) *** > ## Published Results: * *A GRU deep learning system against attacks in software defined networks* * https://doi.org/10.1016/j.jnca.2020.102942 * \***Update - 06/2022** - improved detection results through better data cleaning process. Updated results on Git. > ## Objectives 1. Evaluate different Machine and Deep Learning methods for anomaly detection. 2. Detection of Distributed Denial of Service Attacks > ## Dataset * CIC-DDoS2019 - https://www.unb.ca/cic/datasets/ddos-2019.html > ## Evaluated Methods * Gated Recurrent Units (GRU) * Long-Short Term Memory (LSTM) * Convolutional Neural Network (CNN) * Deep Neural Network (DNN) * Support Vector Machine (SVM) * Logistic Regression (LR) * Gradient Descent (GD) * k Nearest Neighbors (kNN) > ## Environment Config. * Python 3.7.13 * Numpy 1.16.4 * Scikit-learn 0.21.2 * Pandas 0.24.2 * Tensorflow 1.14.0 * Keras 2.2.4 * Matplotlib 3.1.0 * Seaborn 0.11.2 ***