English Version | 中文版
🌟 核心价值
GC-QA-RAG 是一款面向葡萄城产品生态(包括 活字格、WYN、SpreadJS 和 GCExcel 等)的检索增强生成(RAG)系统。该系统通过智能文档处理、高效知识检索、精准问答等功能,有效提升了知识管理效率和用户支持体验。
本系统创新性地采用了 QA 预生成技术,克服了传统文本切片方法在知识库构建中的若干局限性。经过实践验证,该技术方案能够显著提升检索效果,可为 RAG 领域的技术实践提供新的思路。
葡萄城秉持“赋能开发者”的理念,现将 GC-QA-RAG 项目完整开源:
本项目也分享了葡萄城在 RAG 知识库产品设计方面的实践经验,希望能为相关领域的产品和技术探索提供有益参考。
作为企业级解决方案提供商,葡萄城积累了大量的产品用户。在日常使用中,用户需要快速获取准确的产品信息,但现有帮助文档和技术社区存在以下挑战:
基于 AI 大模型技术,我们开发了 GC-QA-RAG 系统,旨在:
查看项目背景了解更多。
GC-QA-RAG 采用"传统搜索界面+智能问答"的混合设计模式,旨在结合搜索引擎的高效性与 AI 的智能化能力。经过对对话式 AI 助手的深入评估,我们发现传统搜索界面更符合用户对信息获取效率的核心需求,同时通过智能回答区域提供 AI 增强的交互体验。
查看产品设计了解更多。
产品通过清晰的界面层级和智能化的交互设计,在保持搜索效率的同时提供 AI 增强功能。默认的单次搜索模式确保响应速度,追问功能满足深度探索需求,而可视化的上下文管理帮助用户保持操作认知。这种平衡设计使用户既能快速获取核心信息,又可按需展开更深入的智能交互。
GC-QA-RAG 采用三层架构设计,确保系统清晰高效且可扩展:
查看技术架构了解更多。
在构建企业级 RAG 知识库系统的实践中,我们面临着知识表征方面的基础性挑战。这些挑战主要源于知识本身固有的时空特性,这在当前 AI 技术发展阶段呈现出显著的解决难度。
问题描述:
产品不同模块中存在功能命名冲突现象。以活字格低代码平台为例,其文档中会出现以下情况:
影响:
这种命名冲突不仅给技术支持人员带来困扰,对 AI 系统的语义理解也构成了显著挑战。
问题描述:
同一功能在不同版本中存在特性差异,典型表现为:
影响:
这种版本差异使得准确匹配用户实际环境中的功能特性变得复杂,增加了知识检索的难度。
GC-QA-RAG 系统在实际业务场景中取得了令人鼓舞的应用成效,主要体现在以下几个方面:
用户接受度与粘性
系统上线后,用户访问量呈现稳步增长并逐渐趋于稳定,表明产品已经形成了稳定的用户群体和使用习惯。用户留存数据反映出较高的使用粘性,许多用户已将系统作为日常求疑解答的工具。
持续的产品优化
我们建立了完善的用户反馈机制,定期收集来自终端用户和技术支持团队的使用体验和改进建议。这些宝贵的实践反馈为系统迭代提供了明确方向,推动产品功能持续完善。
用户群体认可度
系统获得了用户群体的高度评价,其背后的技术创新思路也引起了专业开发者用户的广泛关注。技术原理和实现方案成为客户咨询探讨的热点,多个客户与团队表示希望借鉴相关经验。
业务价值体现
从实际使用效果来看,系统显著提升了技术支持效率和用户自助服务能力。知识获取革新带来可感知的流程优化,用户正向评价充分印证其成效。
这些成果不仅验证了产品和技术路线的可行性,也为后续发展奠定了坚实的基础。同时,我们相信 QA 预生成方案对文档型知识库具有普遍的参考价值。我们将继续秉持开放的态度,与用户社区和专业开发者携手合作,共同推动技术的不断进步。
查看落地效果了解更多。
MIT
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。