# IPOT **Repository Path**: gravifer/IPOT ## Basic Information - **Project Name**: IPOT - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-02 - **Last Updated**: 2021-06-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # IPOT Implementation of Inexact Proximal point method for Optimal Transport from paper "A Fast Proximal Point Method for Computing Exact Wasserstein Distance" (https://arxiv.org/abs/1802.04307). -------------------- Package dependencies -------------------- It requires the following Python packages: Python 3.5 numpy matplotlib pot 0.4.0 tensorflow 1.1.0 ------------------- Included modules -------------------- ipot.py: include function ipot_WD that computes the Wasserstein distance, a function ipot_barycenter that computes the Wasserstein barycenter. ipot_demo.py: Demo for computing Wasserstein distance using ipot.ipot_WD. learning_demo.py: 1D demo for learning generative model using ipot.ipot_WD. This file is the only one that needs Tensorflow. barycenter_demo.py: Demo for computing Wasserstein barycenter. ------------------- How to run the code ------------------- 1. To compute Wasserstein distance: ``` python ipot_demo.py ``` 2. To learn 1D generative model: ``` python learning_demo.py ``` 3. To compute Wasserstein barycenter: ``` python barycenter_demo.py ``` ------------------- License ------------------- If you use my code, please cite our paper ``` @article{xie2018fast, title={A Fast Proximal Point Method for Computing Exact Wasserstein Distance}, author={Xie, Yujia and Wang, Xiangfeng and Wang, Ruijia and Zha, Hongyuan}, journal={arXiv preprint arXiv:1802.04307}, year={2018} } ```