# HRFAE **Repository Path**: greendream182/HRFAE ## Basic Information - **Project Name**: HRFAE - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## HRFAE: High Resolution Face Age Editing Official implementation for paper *High Resolution Face Age Editing*. ![Teaser image](./arch.png) ## Dependencies * Python 3.7 * Pytorch 1.1 * Numpy * Opencv * TensorboardX * Tensorboard_logger You can also create a new environment for this repo by running ``` conda env create -f env.yml ``` ## Load and test pretrained network 1. You can download the pretrained model by running: ``` cd ./logs/001 ./download.sh ``` 2. Upload test images in the folder `/test/input` and run the test file. The output images will be saved in the folder `/test/output`. You can change the desired target age with `--target_age`. ``` python test.py --config 001 --target_age 65 ``` ## Train a new model 1. Pretrained age classifier To get age information, we use an age classifier pretrained on [IMDB-WIKI](https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/) dataset. We use the model released from paper [Deep expectation of real and apparent age from a single image without facial landmarks](https://data.vision.ee.ethz.ch/cvl/publications/papers/articles/eth_biwi_01299.pdf) by Rothe et al. To prepare the model, you need to download the original [caffe model](https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/dex_imdb_wiki.caffemodel) and convert it to PyTorch format. We use the converter [caffemodel2pytorch](https://github.com/vadimkantorov/caffemodel2pytorch) released by Vadim Kantorov. Then name the PyTorch model as `dex_imdb_wiki.caffemodel.pt` and put it in the folder `/models`. 2. Preparing your dataset Download [FFHQ](https://github.com/NVlabs/ffhq-dataset) dataset and unzip it to the `/data/ffhq` directory. Download [age label](https://partage.imt.fr/index.php/s/DbSk4HzFkeCYXDt) to the `/data` directory. You can also train the model with your own dataset. Put your images in the `/data` directory. With the pretrained classifier, you can create a new label file with the age of each image. 3. Training You can modify the training options of the config file in `configs` directory. ``` python train.py --config 001 ``` ## Citation ``` @article{yao2020high, title = {High Resolution Face Age Editing}, author = {Xu Yao and Gilles Puy and Alasdair Newson and Yann Gousseau and Pierre Hellier}, journal = {CoRR}, volume = {abs/2005.04410}, year = {2020}, } ``` ## License Copyright © 2020, InterDigital R&D France. All rights reserved. This source code is made available under the license found in the LICENSE.txt in the root directory of this source tree.