# ACSDCF **Repository Path**: greitzmann/ACSDCF ## Basic Information - **Project Name**: ACSDCF - **Description**: Adaptive Channel Selection for Robust Visual Tracking with Discriminative Correlation Filters (ACSDCF) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Instruction for ACSDCF Tracker: Adaptive Channel Selection for Robust Visual Tracking with Discriminative Correlation Filters (ACSDCF) utilises adaptive channel selection method to train low-dimensional discriminative correlation filters. Dependencies: MatConvNet, PDollar Toolbox, mtimesx and mexResize. Installation: Run install.m file to compile the libraries. Download deep extractor from http://www.vlfeat.org/matconvnet/models/imagenet-resnet-50-dag.mat Edit setup_paths.m to set involved paths. configure ACSDCF for OTB benchmark or VOT toolkit using run_ACSDCF.m or run_ACSDCF_HC.m Operating system: Ubuntu 14.04 LTS, Matlab R2016a, CPU Intel(R) Xeon(R) E5-2643 References: [1] Henriques, João F., et al. "High-speed tracking with kernelized correlation filters." IEEE Transactions on Pattern Analysis and Machine Intelligence 37.3 (2015): 583-596. [2] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. [3] Van De Weijer, Joost, et al. "Learning color names for real-world applications." IEEE Transactions on Image Processing 18.7 (2009): 1512-1523. [4] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [5] Bhat, Goutam, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, and Michael Felsberg. "Unveiling the Power of Deep Tracking." arXiv preprint arXiv:1804.06833 (2018). [6] Danelljan, Martin, et al. "Eco: Efficient convolution operators for tracking." Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.