# DeepGS **Repository Path**: greitzmann/DeepGS ## Basic Information - **Project Name**: DeepGS - **Description**: DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction (ECAI 2020) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-01-16 - **Last Updated**: 2025-05-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

DeepGS

Source Code Repository for DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction. Please refer to [our paper](http://ecai2020.eu/papers/34_paper.pdf) for detailed ([ECAI 2020](http://ecai2020.eu/) will be held soon ) The framework of DeepGS

Installation

We recommend to create a new environment. ```bash conda create -n deepgs python=3.7.6 source activate deepgs ``` DeepGS is implemented based on [Pytorch](https://pytorch.org/), [RDKit](http://www.rdkit.org/docs/Install.html#how-to-install-rdkit-with-conda) and [pytorch-geometric](https://github.com/rusty1s/pytorch_geometric). ```bash git clone https://github.com/jacklin18/DeepGS.git cd DeepGS pip install -r requirements.txt ```

Data

Please see the [DeepDTA](https://github.com/hkmztrk/DeepDTA) for detailed information. In order to train the DeepGS model, you must provide training data with each row contains a molecule (i.e., SMILES strings), a protein sequence (i.e., amino acids) and a label between the drug-target pair (i.e., binding affinity value). For example: ```bash CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CC=CC=C4)N MKKFFDSRREQGGSGLGSGSSGGGGSTSGLGSGYIGRVFGIGRQQVTVDEVLAEGGFAIVFLVRTSNGMKCALKRMFVNNEHDLQVCKREIQIMRDLSGHKNIVGYIDSSINNVSSGDVWEVLILMDFCRGGQVVNLMNQRLQTGFTENEVLQIFCDTCEAVARLHQCKTPIIHRDLKVENILLHDRGHYVLCDFGSATNKFQNPQTEGVNAVEDEIKKYTTLSYRAPEMVNLYSGKIITTKADIWALGCLLYKLCYFTLPFGESQVAICDGNFTIPDNSRYSQDMHCLIRYMLEPDPDKRPDIYQVSYFSFKLLKKECPIPNVQNSPIPAKLPEPVKASEAAAKKTQPKARLTDPIPTTETSIAPRQRPKAGQTQPNPGILPIQPALTPRKRATVQPPPQAAGSSNQPGLLASVPQPKPQAPPSQPLPQTQAKQPQAPPTPQQTPSTQAQGLPAQAQATPQHQQQLFLKQQQQQQQPPPAQQQPAGTFYQQQQAQTQQFQAVHPATQKPAIAQFPVVSQGGSQQQLMQNFYQQQQQQQQQQQQQQLATALHQQQLMTQQAALQQKPTMAAGQQPQPQPAAAPQPAPAQEPAIQAPVRQQPKVQTTPPPAVQGQKVGSLTPPSSPKTQRAGHRRILSDVTHSAVFGVPASKSTQLLQAAAAEASLNKSKSATTTPSGSPRTSQQNVYNPSEGSTWNPFDDDNFSKLTAEELLNKDFAKLGEGKHPEKLGGSAESLIPGFQSTQGDAFATTSFSAGTAEKRKGGQTVDSGLPLLSVSDPFIPLQVPDAPEKLIEGLKSPDTSLLLPDLLPMTDPFGSTSDAVIEKADVAVESLIPGLEPPVPQRLPSQTESVTSNRTDSLTGEDSLLDCSLLSNPTTDLLEEFAPTAISAPVHKAAEDSNLISGFDVPEGSDKVAEDEFDPIPVLITKNPQGGHSRNSSGSSESSLPNLARSLLLVDQLIDL 43.0 ... ```

Usage

(i) preprocess data as input ```bash cd code sh/bash preprocess.sh ``` (ii) train the model ```bash sh/bash run_tranining.sh ```

Citation

If you use the code of DeepGS, please cite the [paper](http://ecai2020.eu/papers/34_paper.pdf) below: > @inproceedings{lin2020deepgs, title ={DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction}, author ={Lin, Xuan and Zhao, Kaiqi and Xiao, Tong and Quan, Zhe and Wang, Zhi-Jie and Yu, Philip S}, booktitle ={24th European Conference on Artificial Intelligence (ECAI)}, pages ={1--8}, year ={2020} }