# Graph-WaveNet **Repository Path**: greitzmann/Graph-WaveNet ## Basic Information - **Project Name**: Graph-WaveNet - **Description**: Modifications to Graph Wavenet - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-20 - **Last Updated**: 2021-01-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Graph WaveNet for Deep Spatial-Temporal Graph Modeling This is the original pytorch implementation of Graph WaveNet in the following paper: [Graph WaveNet for Deep Spatial-Temporal Graph Modeling, IJCAI 2019] (https://arxiv.org/abs/1906.00121), with modifications presented in [Incrementally Improving Graph WaveNet Performance on Traffic Prediction] (https://arxiv.org/abs/1912.07390):

## Requirements - python 3 - see `requirements.txt` ## Data Preparation 1) Download METR-LA and PEMS-BAY data from [Google Drive](https://drive.google.com/open?id=10FOTa6HXPqX8Pf5WRoRwcFnW9BrNZEIX) or [Baidu Yun](https://pan.baidu.com/s/14Yy9isAIZYdU__OYEQGa_g) links provided by [DCRNN](https://github.com/liyaguang/DCRNN). 2) ``` # Create data directories mkdir -p data/{METR-LA,PEMS-BAY} # METR-LA python generate_training_data.py --output_dir=data/METR-LA --traffic_df_filename=data/metr-la.h5 # PEMS-BAY python generate_training_data.py --output_dir=data/PEMS-BAY --traffic_df_filename=data/pems-bay.h5 ``` ## Train Commands Note: train.py saves metrics to a directory specified by the `--save` arg in metrics.csv and test_metrics.csv Model that gets (3.00 - 3.02 Test MAE, ~2.73 Validation MAE) ``` python train.py --cat_feat_gc --fill_zeroes --do_graph_conv --addaptadj --randomadj --es_patience 20 --save logs/baseline_v2 ``` Finetuning (2.99 - 3.00 MAE) ``` python generate_training_data.py --seq_length_y 6 --output_dir data/METR-LA_12_6 python train.py --data data/METR-LA_12_6 --cat_feat_gc --fill_zeroes --do_graph_conv --addaptadj --randomadj --es_patience 20 --save logs/front_6 python train.py --checkpoint logs/front_6/best_model.pth --cat_feat_gc --fill_zeroes --do_graph_conv --addaptadj --randomadj --es_patience 20 --save logs/finetuned ``` Original Graph Wavenet Model (3.04-3.07 MAE) ``` python train.py --clip 5 --lr_decay_rate 1. --nhid 32 --do_graph_conv --addaptadj --randomadj --save logs/baseline ``` You can also train from a jupyter notebook with ```{python} from train import main from durbango import pickle_load args = pickle_load('baseline_args.pkl') # manipulate these in python args.lr_decay_rate = .97 args.clip = 3 args.save = 'logs/from_jupyter' main(args) # takes roughly an hour depending on nhid, and early_stopping ``` Train models configured in Table 3 of the original GraphWavenet paper by using the `--adjtype, --addaptadj, --aptonly` command line argument. These flags are (somewhat) documented in util.py. Run unitests with `pytest` ### Possible Improvements * move redundant `.transpose(1,3)` to dataloader or `load_dataset`