# LADCF **Repository Path**: greitzmann/LADCF ## Basic Information - **Project Name**: LADCF - **Description**: Matlab implementation of TIP2019 paper "Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # LADCF - No 1 Algorithm on the public dataset of [VOT2018](http://www.votchallenge.net/vot2018/) Demo for Learning Adaptive Discriminative Correlation Filters (LADCF) via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking ## [Download the Paper](https://ieeexplore.ieee.org/document/8728173) >@article{xu2019learning, title={Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking}, author={Xu, Tianyang and Feng, Zhen-Hua and Wu, Xiao-Jun and Kittler, Josef}, journal={IEEE Transactions on Image Processing}, pages={5596--5609}, volume={28}, number={11}, year={2019} } ## The tracker codes for ICCV2019 can be [download here](https://github.com/XU-TIANYANG/GFS-DCF). More group feature selection strategies are explored. ### The tracker codes for VOT2018 can be [download here](https://github.com/XU-TIANYANG/LADCF_VOT). More powerful features and data augmentation techniques are added for the VOT2018. ### Instruction for LADCF_HC Tracker: Learning Adaptive Discriminative Correlation Filter on Low-dimensional Manifold (LADCF) utilises adaptive spatial regularizer to train low-dimensional discriminative correlation filters. We follow a single-frame learning and updating strategy: the filters are learned after tracking stage and then updated using a fixed rate [1]. We use HOG [2] and CN [3]. Code modules refer to ECO [4] in feature extraction. #### Dependencies: - [PDollar Toolbox](https://pdollar.github.io/toolbox) - mtimesx (https://github.com/martin-danelljan/ECO/tree/master/external_libs/mtimesx) - mexResize (https://github.com/martin-danelljan/ECO/tree/master/external_libs/mexResize) #### Operating system: Ubuntu 14.04 LTS, Matlab R2016a, CPU Intel(R) Xeon(R) E5-2643 #### References: - [1] Henriques, João F., et al. "High-speed tracking with kernelized correlation filters." IEEE Transactions on Pattern Analysis and Machine Intelligence 37.3 (2015): 583-596. - [2] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. - [3] Van De Weijer, Joost, et al. "Learning color names for real-world applications." IEEE Transactions on Image Processing 18.7 (2009): 1512-1523. - [4] Danelljan, Martin, et al. "Eco: Efficient convolution operators for tracking." Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. #### Raw Results: [OTB100(hand-crafted feature)](https://github.com/XU-TIANYANG/cakes/raw/master/LADCF_HC_OTB100_results.zip) [OTB100(deep feature)](https://github.com/XU-TIANYANG/cakes/raw/master/LADCF_OTB100_results.zip)