# Optimized-MDNet **Repository Path**: greitzmann/Optimized-MDNet ## Basic Information - **Project Name**: Optimized-MDNet - **Description**: Optimized MDNet for fast object tracking - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Optimized MDNet for visual object tracking This repository contains a [MatConvNet](http://www.vlfeat.org/matconvnet/) re-implementation for [MDNet](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Nam_Learning_Multi-Domain_Convolutional_CVPR_2016_paper.pdf) algorithm, which is ~10x and ~6x faster than the original matlab and python implementations, respectively. - [MDNet-matlab-Org](https://github.com/HyeonseobNam/MDNet) - [MDNet-python](https://github.com/HyeonseobNam/py-MDNet) ## Detail Comparisons ```shell |-------------------------------------------------------------------| | | MDNet | pyMDNet | MDNet-Org (Ours) | MDNet-Opt (Ours) | |-------------------------------------------------------------------| | OTB-2015 | 67.9 | 65.2 | 66.4 | 67.2 | |-------------------------------------------------------------------| | VOT-2015 | 37.8 | -- | 36.8 | 39.3 | |-------------------------------------------------------------------| | FPS (OTB) | ~1 | ~2 | ~13 | ~13 | |-------------------------------------------------------------------| ``` - MDNet: the original matlab implementation - pyMDNet: python implementation - MDNet-Org (Ours): our implementation using default parameters (see `setting_mdnet_org`) - MDNet-Opt (Ours): our implementation using our settings (see `setting_mdnet_opt`) All trackers are benchmarked on OTB-2015 dataset using a single GPU (GTX 1080). ## Requirements and Dependencies - NVIDIA GPU with compute capability 3.5+ - Matlab 2017a or above - [MatConvNet](http://www.vlfeat.org/matconvnet/) ### Quick Start To run pre-trained MDNet for OTB testing, please follow these steps: 1. Clone this repository into $MDNet: ```bash git clone git@github.com:ZjjConan/Optimized-MDNet.git $MDNet ``` 2. Complie your MatConvNet 3. Change paths - **`setup_optmdnet`:** *`lib_path`* for your own matconvnet - **`run_evaluation_OPE`:** *`savePath`* for your tracking results *`videoPath`* for OTB dataset *`videoAttr`* for OTB subset (OTB2013 or OTB2015) 4. Models `mdnet_vot_otb:` training on VOT13/14/15 datasets for OTB testing. `mdnet_otb_vot:` training on OTB dataset for VOT15 testing. 5. For VOT testing - copy files in `vot/vot_tracker_settings` into your own vot workspace. - changes paths in `tracker_OptMDNet_Opt` or `tracker_OptMDNet_Opt` for

tracking with different parameters. ### Training Your Own Model please find detailed settings in **pretraining** fold for database setup and network training. ### Citations If you use this project in your research, please cite the original MDNet paper: @InProceedings{nam2016mdnet, author = {Nam, Hyeonseob and Han, Bohyung}, title = {Learning Multi-Domain Convolutional Neural Networks for Visual Tracking}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2016} } ### License This software is being made available for research purpose only. Check LICENSE file for details.