# Random-Erasing **Repository Path**: greitzmann/Random-Erasing ## Basic Information - **Project Name**: Random-Erasing - **Description**: Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-27 - **Last Updated**: 2021-01-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Random Erasing Data Augmentation =============================================================== ![Examples](all_examples-page-001.jpg) | black | white | random | |----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------| |![i1](img/001-black.gif)|![i2](img/001-white.gif)| ![i3](img/001-random.gif)| |![i4](img/002-black.gif)|![i5](img/002-white.gif)| ![i6](img/002-random.gif)| ### This code has the source code for the paper "[Random Erasing Data Augmentation](https://arxiv.org/abs/1708.04896)". If you find this code useful in your research, please consider citing: @inproceedings{zhong2020random, title={Random Erasing Data Augmentation}, author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang, Yi}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)}, year={2020} } ### Other re-implementations [\[Official Torchvision in Transform\]](https://pytorch.org/docs/master/torchvision/transforms.html#torchvision.transforms.RandomErasing) [\[Pytorch: Random Erasing for ImageNet\]](https://github.com/rwightman/pytorch-image-models) [\[Python Augmentor\]](http://augmentor.readthedocs.io/en/master/code.html#Augmentor.Pipeline.Pipeline.random_erasing) [\[Person_reID CamStyle\]](https://github.com/zhunzhong07/CamStyle) [\[Person_reID_baseline + Random Erasing + Re-ranking\]](https://github.com/layumi/Person_reID_baseline_pytorch) [\[Keras re-implementation\]](https://github.com/yu4u/cutout-random-erasing) ### Installation Requirements for Pytorch (see [Pytorch](http://pytorch.org/) installation instructions) ### Examples: #### CIFAR10 ResNet-20 baseline on CIFAR10: ``` python cifar.py --dataset cifar10 --arch resnet --depth 20 ``` ResNet-20 + Random Erasing on CIFAR10: ``` python cifar.py --dataset cifar10 --arch resnet --depth 20 --p 0.5 ``` #### CIFAR100 ResNet-20 baseline on CIFAR100: ``` python cifar.py --dataset cifar100 --arch resnet --depth 20 ``` ResNet-20 + Random Erasing on CIFAR100: ``` python cifar.py --dataset cifar100 --arch resnet --depth 20 --p 0.5 ``` #### Fashion-MNIST ResNet-20 baseline on Fashion-MNIST: ``` python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 ``` ResNet-20 + Random Erasing on Fashion-MNIST: ``` python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5 ``` ### Other architectures For ResNet: ``` --arch resnet --depth (20, 32, 44, 56, 110) ``` For WRN: ``` --arch wrn --depth 28 --widen-factor 10 ``` ### Our results You can reproduce the results in our paper: | |  CIFAR10 | CIFAR10| CIFAR100 | CIFAR100| Fashion-MNIST | Fashion-MNIST| | ----- | ----- | ---- | ----- | ---- | ----- | ---- | |Models |  Base. | +RE | Base. | +RE | Base. | +RE | |ResNet-20 |  7.21 | 6.73 | 30.84 | 29.97 | 4.39 | 4.02 | |ResNet-32 |  6.41 | 5.66 | 28.50 | 27.18 | 4.16 | 3.80 | |ResNet-44 |  5.53 | 5.13 | 25.27 | 24.29 | 4.41 | 4.01 | |ResNet-56 |  5.31 | 4.89| 24.82 | 23.69 | 4.39 | 4.13 | |ResNet-110 |  5.10 | 4.61 | 23.73 | 22.10 | 4.40 | 4.01 | |WRN-28-10 |  3.80 | 3.08 | 18.49 | 17.73 | 4.01 | 3.65 | ### NOTE THAT, if you use the latest released Fashion-MNIST, the performance of Baseline and RE will slightly lower than the results reported in our paper. Please refer to the [issue](https://github.com/zhunzhong07/Random-Erasing/issues/9). If you have any questions about this code, please do not hesitate to contact us. [Zhun Zhong](http://zhunzhong.site) [Liang Zheng](http://liangzheng.com.cn)