# SelfExSR **Repository Path**: greitzmann/SelfExSR ## Basic Information - **Project Name**: SelfExSR - **Description**: Single Image Super-Resolution from Transformed Self-Exemplars (CVPR 2015) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-10-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Single Image Super-Resolution from Transformed Self-Exemplars (CVPR 2015) ### Introduction This is the research code for the paper: [Jia-Bin Huang](https://sites.google.com/site/jbhuang0604/), [Abhishek Singh](https://sites.google.com/site/abhishek486/), and [Narendra Ahuja] (http://vision.ai.illinois.edu/ahuja.html), "Single Image Super-Resolution from Transformed Self-Exemplars", CVPR 2015 [PDF](https://uofi.box.com/shared/static/8llt4ijgc39n3t7ftllx7fpaaqi3yau0.pdf) The proposed algorithm achieves the state-of-the-art performance on image super-resolution *without* the need of any external training dataset, feature extraction and complicated learning algorithms. For more details, please visit our [Project page](https://sites.google.com/site/jbhuang0604/publications/struct_sr). All the datasets (Set5, Set14, Urban 100, BSD 100, Sun-Hays 80), precomputed results and visual comparisons can be found in the following sections. ### Citation If you find the code and dataset useful in your research, please consider citing: @inproceedings{Huang-CVPR-2015, title={Single Image Super-Resolution From Transformed Self-Exemplars}, Author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={5197--5206}, Year = {2015} } ### Contents | Folder | description | | ---|---| |cache | cached data for vanishing point detection| |data|Testing images of five datasets (Set5, Set14, Urban 100, BSD 100, Sun-Hays 80). All the images have been cropped according to the desired super-resolution factor. This avoids misalignment of the groundtruth high-resolution images and the super-resolved images| |external|We use the vgg_interp2 from `imrender` to perform bilinear interpolation| |quant_eval|Quantitative evaluation code| |reference| A copy of the CVPR paper and the bibtex| |source|MATLAB source code| To run the algorithm on all datasets, simply run the `sr_demo_bacth.m`. Note that it is an educational code that is not optimized for speed. If timing is a concern, you can achieve visually similar results with small numbers of iterations, e.g., set the number of iterations `opt.numIter = 5;` in the file `sr_init_opt.m`. An example of the speed and quality trade-off can be found in Fig. 10 in the paper. Feedbacks and comments are welcome! Feel free to contact me via jbhuang1@illinois.edu. Enjoy! Note: For vanishing point detection only windows executable is provided (from [Image Completion using Planar Structure Guidance](https://github.com/jbhuang0604/StructCompletion)), a cross-platform version will be included later. ### Comparison with the state-of-the-art ##### Datasets The full super-resolution results on Set 5, Set 14, Urban 100, BSD 100 and Sun-Hays 80 are available. | Dataset | Image source | Download full results | |---- | ---|----| ----| | **Set 5** | [Bevilacqua et al. BMVC 2012](http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html) | [link](https://uofi.box.com/shared/static/kfahv87nfe8ax910l85dksyl2q212voc.zip) (16.1 MB)| | **Set 14** | [Zeyde et al. LNCS 2010](https://sites.google.com/site/romanzeyde/research-interests) | [link](https://uofi.box.com/shared/static/igsnfieh4lz68l926l8xbklwsnnk8we9.zip) (86.0 MB)| | **Urban 100** | [Huang et al. CVPR 2015](https://sites.google.com/site/jbhuang0604/publications/struct_sr) | [link](https://uofi.box.com/shared/static/65upg43jjd0a4cwsiqgl6o6ixube6klm.zip) (1.14 GB)| | **BSD 100** | [Martin et al. ICCV 2001](https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) | [link](https://uofi.box.com/shared/static/qgctsplb8txrksm9to9x01zfa4m61ngq.zip) (568 MB)| | **Sun-Hays 80** | [Sun and Hays ICCP 2012](http://cs.brown.edu/~lbsun/SRproj2012/SR_iccp2012.html) | [link](https://uofi.box.com/shared/static/rirohj4773jl7ef752r330rtqw23djt8.zip) (311 MB)| Set 5 dataset - [link](https://uofi.box.com/shared/static/kfahv87nfe8ax910l85dksyl2q212voc.zip) ![Set 5](https://uofi.box.com/shared/static/sk9duzzu63x80zdgwszf1vwqwl0ea7zx.jpg) Set 14 dataset - [link](https://uofi.box.com/shared/static/igsnfieh4lz68l926l8xbklwsnnk8we9.zip) ![Set 14](https://uofi.box.com/shared/static/b8067imlbojcdk6guepudlj7c0wh3kmd.jpg) Urban 100 dataset - [link](https://uofi.box.com/shared/static/65upg43jjd0a4cwsiqgl6o6ixube6klm.zip) ![Urban 100](https://uofi.box.com/shared/static/20cy9kji3990py2jwu4uwidho3wh2ke0.jpg) BSD 100 dataset - [link](https://uofi.box.com/shared/static/qgctsplb8txrksm9to9x01zfa4m61ngq.zip) ![BSD 100](https://uofi.box.com/shared/static/yx1eqfb2yewy5fj2bvnxxb766irgpfh4.jpg) Sun-Hays 80 dataset - [link](https://uofi.box.com/shared/static/rirohj4773jl7ef752r330rtqw23djt8.zip) ![Sun-Hays 80](https://uofi.box.com/shared/static/5mal435jvm5tanszrd95e1orltomq8s3.jpg) ##### State-of-the-art image super-resolution algorithms In each dataset, we include results of the state-of-the-art single image super-resolution algorithms: | Image | Description| | ---|---| | **HR**| High-resolution images. All images were cropped so that each dimension is a multiplication of the super-resolution factor. This avoids the misalignment problem in the quantitative comparison. | | **LR** | Low-resolution test images generated with bicubic kernel downsampling.| |**bicubic**|Bicubic interpolation| |**nearest**|Nearest-neighbor interpolation| |**SelfExSR**|Our result| |**A+**|R. Timofte, V. De Smet, and L. Van Gool, A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In Asian Conference on Computer Vision (ACCV 2014). Code available [here](http://www.vision.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html)| |**Abhishek**|A. Singh and N. Ahuja, Super-Resolution Using Sub-Band Self-Similarity. In Asian Conference on Computer Vision (ACCV 2014). No publicly implementation available. Results were provided by the authors.| |**Kim**|K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse regression and natural image prior”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1127-1133, 2010. Code available [here](https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm)| |**Glasner**| Daniel Glasner, Shai Bagon, Michal Irani. Super-Resolution From a Single Image, In International Conference on Computer Vision (ICCV 2009). No public implementation available. Results were generated by our own implementation.| |**ScSR**|Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, Vol 19, Issue 11, pp2861-2873, 2010. Code available [here](http://www.ifp.illinois.edu/~jyang29/ScSR.htm)| |**SRCNN**| Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution, in European Conference on Computer Vision (ECCV 2014). Code available [here](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)| ### Qualitative comparison In our supplementary material, we includde 120 sample comparisons with the state-of-the-art algorithms. Download the document [here](https://uofi.box.com/shared/static/k0a2wziaavwoo557aygkbwsa6syln1b9.pdf). You can browse and compare our results with other methods via the following links. * [Urbana 100](https://dl.dropboxusercontent.com/u/2810224/Homepage/publications/2015/SuperResolution_CVPR_2015/supp/Urban_SRF_4.html) - Super-resolution factor 4x * [BSD 100](https://dl.dropboxusercontent.com/u/2810224/Homepage/publications/2015/SuperResolution_CVPR_2015/supp/BSD_SRF_3.html) - Super-resolution factor 3x * [Sun-Hays 80](https://dl.dropboxusercontent.com/u/2810224/Homepage/publications/2015/SuperResolution_CVPR_2015/supp/Sun_Hays_SRF_8.html) - Super-resolution factor 8x ### Quantitative comparisons We report three types of metrics * PSNR: [Peak signal-to-noise ratio](http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio) * SSIM: [Structural similarity index](https://ece.uwaterloo.ca/~z70wang/research/ssim/) * IFC: [Information fidelity criterion](http://live.ece.utexas.edu/research/quality/) ##### Results on Set 5 | Scale | Bicubic | ScSR | Kim | Sub-band | Glasner |SRCNN | A+ | Ours | |:---------:|:-------:|:--------:|:------:|:------------:|:---------:|:--------:|:------:|:----:| | **2x** - PSNR| 33.64 | 35.78 | 36.24 | Sub-band | 35.43 | 36.28 | A+ | 36.50 | | **3x** - PSNR| 30.39 | 31.34 | 32.30 | Sub-band | 31.10 | 32.37 | A+ | 32.62 | | **4x** - PSNR| 28.42 | 29.07 | 30.07 | Sub-band | 28.84 | 30.08 | A+ | 30.33 | || | **2x** - SSIM| 0.9292 | 0.9485 | 0.9518 | Sub-band | 0.9452 | 0.9509 | A+ | 0.9537 | | **3x** - SSIM| 0.8678 | 0.8869 | 0.9041 | Sub-band | 0.8811 | 0.9025 | A+ | 0.9094 | | **4x** - SSIM| 0.8101 | 0.8263 | 0.8553 | Sub-band | 0.8210 | 0.8525 | A+ | 0.8623 | || | **2x** - IFC| 5.72 | 6.94 | 7.05 | Sub-band | 6.70 | 6.85 | A+ | 7.83 | | **3x** - IFC| 3.45 | 3.98 | 4.25 | Sub-band | 3.68 | 4.11 | A+ | 4.76 | | **4x** - IFC| 2.28 | 2.57 | 2.82 | Sub-band | 2.42 | 2.76 | A+ | 3.19 | ##### Results on Set 14 | Scale | Bicubic | ScSR | Kim | Sub-band | Glasner |SRCNN | A+ | Ours | |:---------:|:-------:|:--------:|:------:|:------------:|:---------:|:--------:|:------:|:----:| | **2x** - PSNR| 30.22 | 31.64 | 32.14 | Sub-band | 31.41 | 32.00 | A+ | 32.23 | | **3x** - PSNR| 27.53 | 28.19 | 28.96 | Sub-band | 28.21 | 28.90 | A+ | 29.16 | | **4x** - PSNR| 25.99 | 26.40 | 27.18 | Sub-band | 26.43 | 27.13 | A+ | 27.40 | || | **2x** - SSIM| 0.8683 | 0.8940 | 0.9031 | Sub-band | 0.8881 | 0.9012 | A+ | 0.9036 | | **3x** - SSIM| 0.7737 | 0.7977 | 0.8140 | Sub-band | 0.7926 | 0.8124 | A+ | 0.8197 | | **4x** - SSIM| 0.7023 | 0.7218 | 0.7434 | Sub-band | 0.7163 | 0.7395 | A+ | 0.7518 | || | **2x** - IFC| 5.74 | 6.83 | 6.92 | Sub-band | 6.47 | 6.68 | A+ | 7.60 | | **3x** - IFC| 3.33 | 3.75 | 3.92 | Sub-band | 3.59 | 3.81 | A+ | 4.38 | | **4x** - IFC| 2.18 | 2.46 | 2.57 | Sub-band | 2.30 | 2.50 | A+ | 2.90 | ##### Results on Urban 100 | Scale | Bicubic | ScSR | Kim | Sub-band | Glasner |SRCNN | A+ | Ours | |:---------:|:-------:|:--------:|:------:|:------------:|:---------:|:--------:|:------:|:----:| | **2x** - PSNR| 26.66 | 28.26 | 28.74 | 28.34 | 27.85 | 28.65 | 28.87 | 29.38 | | **4x** - PSNR| 23.14 | 24.02 | 24.20 | 24.19 | 23.58 | 24.14 | 24.34 | 24.82 | || | **2x** - SSIM| 0.8408 | 0.8828 | 0.8940 | 0.8820 | 0.8709 | 0.8909 | 0.8957 | 0.9032 | | **4x** - SSIM| 0.6573 | 0.7024 | 0.7104 | 0.7115 | 0.6736 | 0.7047 | 0.7195 | 0.7386 | || | **2x** - IFC| 5.72 | 6.98 | 6.86 | 7.08 | 6.17 | 6.66 | 8.02 | 7.96 | | **4x** - IFC| 2.27 | 2.75 | 2.71 | 2.72 | 2.35 | 2.63 | 3.16 | 3.33 | ##### Results on BSD 100 | Scale | Bicubic | ScSR | Kim | Sub-band | Glasner |SRCNN | A+ | Ours | |:---------:|:-------:|:--------:|:------:|:------------:|:---------:|:--------:|:------:|:----:| | **2x** - PSNR| 29.55 | 30.77 | 31.11 | 30.73 | 30.28 | 31.11 | 31.22 | 31.18 | | **3x** - PSNR| 27.20 | 27.72 | 28.17 | 27.88 | 27.06 | 28.20 | 28.30 | 28.30 | | **4x** - PSNR| 25.96 | 26.61 | 26.71 | 26.60 | 26.17 | 26.70 | 26.82 | 26.85 | || | **2x** - SSIM| 0.8425 | 0.8744 | 0.8840 | 0.8774 | 0.8621 | 0.8835 | 0.8862 | 0.8855 | | **3x** - SSIM| 0.7382 | 0.7647 | 0.7788 | 0.7714 | 0.7368 | 0.7794 | 0.7836 | 0.7843 | | **4x** - SSIM| 0.6672 | 0.6983 | 0.7027 | 0.7021 | 0.6747 | 0.7018 | 0.7089 | 0.7108 | || | **2x** - IFC| 5.26 | 6.20 | 6.30 | 6.36 | 5.56 | 6.09 | 7.15 | 6.84 | | **3x** - IFC| 3.00 | 3.37 | 3.49 | 3.17 | 2.72 | 3.39 | 3.92 | 3.81 | | **4x** - IFC| 1.91 | 2.22 | 2.20 | 2.18 | 1.86 | 2.18 | 2.51 | 2.46 |