# graph_level_drug_discovery **Repository Path**: greitzmann/graph_level_drug_discovery ## Basic Information - **Project Name**: graph_level_drug_discovery - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-18 - **Last Updated**: 2021-01-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Learning Graph-Level Representation for Drug Discovery Paper Link: [Learning Graph-Level Representation for Drug Discovery](https://arxiv.org/abs/1709.03741) ## Requirements - Install [DeepChem(july2017)](https://github.com/deepchem/deepchem/tree/july2017) ## Usage 1.Clone the repository git clone https://github.com/ZJULearning/graph_level_drug_discovery.git 2.Training python train.py --gpu 0 --dataset pcba Our ```train.py``` only supports 6 datasets in MoleculeNet, including Tox21, ToxCast, HIV, MUV, PCBA, SAMPL. ## Result Database and baseline: [MoleculeNet](https://arxiv.org/abs/1703.00564) |Dataset |Split Method|Train|Valid|Test | |---------|------------|-----|-----|-----| |Tox21 |Index |0.965|0.839|0.848| |Tox21 |Random |0.964|0.842|0.854| |Tox21 |Scaffold |0.971|0.788|0.759| |ToxCast |Index |0.927|0.747|0.734| |ToxCast |Random |0.924|0.746|0.768| |ToxCast |Scaffold |0.929|0.696|0.657| |PCBA |Index |0.904|0.869|0.864| |PCBA |Random |0.899|0.863|0.867| |PCBA |Scaffold |0.907|0.847|0.845| ## Citation Please cite our work in your publications if it helps your research: @article{Li2017Learning, Title={Learning Graph-Level Representation for Drug Discoveryk}, Journal={arXiv preprint arXiv:1709.03741}, Author={Junying Li, Deng Cai, Xiaofei He}, Year={2017}, }