# moses **Repository Path**: greitzmann/moses ## Basic Information - **Project Name**: moses - **Description**: Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-16 - **Last Updated**: 2021-01-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Molecular Sets (MOSES): A benchmarking platform for molecular generation models [![Build Status](https://travis-ci.com/molecularsets/moses.svg?branch=master)](https://travis-ci.com/molecularsets/moses) [![PyPI version](https://badge.fury.io/py/molsets.svg)](https://badge.fury.io/py/molsets) Deep generative models are rapidly becoming popular for the discovery of new molecules and materials. Such models learn on a large collection of molecular structures and produce novel compounds. In this work, we introduce Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, we aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models. __For more details, please refer to the [paper](https://arxiv.org/abs/1811.12823).__ If you are using MOSES in your research paper, please cite us as ``` @article{10.3389/fphar.2020.565644, title={{M}olecular {S}ets ({MOSES}): {A} {B}enchmarking {P}latform for {M}olecular {G}eneration {M}odels}, author={Polykovskiy, Daniil and Zhebrak, Alexander and Sanchez-Lengeling, Benjamin and Golovanov, Sergey and Tatanov, Oktai and Belyaev, Stanislav and Kurbanov, Rauf and Artamonov, Aleksey and Aladinskiy, Vladimir and Veselov, Mark and Kadurin, Artur and Johansson, Simon and Chen, Hongming and Nikolenko, Sergey and Aspuru-Guzik, Alan and Zhavoronkov, Alex}, journal={Frontiers in Pharmacology}, year={2020} } ``` ![pipeline](images/pipeline.png) ## Dataset We propose [a benchmarking dataset](https://media.githubusercontent.com/media/molecularsets/moses/master/data/dataset_v1.csv) refined from the ZINC database. The set is based on the ZINC Clean Leads collection. It contains 4,591,276 molecules in total, filtered by molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds not greater than 7, and XlogP less than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS filters. The dataset contains 1,936,962 molecular structures. For experiments, we split the dataset into a training, test and scaffold test sets containing around 1.6M, 176k, and 176k molecules respectively. The scaffold test set contains unique Bemis-Murcko scaffolds that were not present in the training and test sets. We use this set to assess how well the model can generate previously unobserved scaffolds. ## Models * [Character-level Recurrent Neural Network (CharRNN)](./moses/char_rnn/README.md) * [Variational Autoencoder (VAE)](./moses/vae/README.md) * [Adversarial Autoencoder (AAE)](./moses/aae/README.md) * [Junction Tree Variational Autoencoder (JTN-VAE)](https://github.com/wengong-jin/icml18-jtnn/tree/master/fast_molvae) * [Latent Generative Adversarial Network (LatentGAN)](./moses/latentgan/README.md) ## Metrics Besides standard uniqueness and validity metrics, MOSES provides other metrics to access the overall quality of generated molecules. Fragment similarity (Frag) and Scaffold similarity (Scaff) are cosine distances between vectors of fragment or scaffold frequencies correspondingly of the generated and test sets. Nearest neighbor similarity (SNN) is the average similarity of generated molecules to the nearest molecule from the test set. Internal diversity (IntDiv) is an average pairwise similarity of generated molecules. Fréchet ChemNet Distance (FCD) measures the difference in distributions of last layer activations of ChemNet. Novelty is a fraction of unique valid generated molecules not present in the training set.
Model Valid (↑) Unique@1k (↑) Unique@10k (↑) FCD (↓) SNN (↑) Frag (↑) Scaf (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)
Test TestSF Test TestSF Test TestSF Test TestSF
Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
HMM 0.076±0.0322 0.623±0.1224 0.5671±0.1424 24.4661±2.5251 25.4312±2.5599 0.3876±0.0107 0.3795±0.0107 0.5754±0.1224 0.5681±0.1218 0.2065±0.0481 0.049±0.018 0.8466±0.0403 0.8104±0.0507 0.9024±0.0489 0.9994±0.001
NGram 0.2376±0.0025 0.974±0.0108 0.9217±0.0019 5.5069±0.1027 6.2306±0.0966 0.5209±0.001 0.4997±0.0005 0.9846±0.0012 0.9815±0.0012 0.5302±0.0163 0.0977±0.0142 0.8738±0.0002 0.8644±0.0002 0.9582±0.001 0.9694±0.001
Combinatorial 1.0±0.0 0.9983±0.0015 0.9909±0.0009 4.2375±0.037 4.5113±0.0274 0.4514±0.0003 0.4388±0.0002 0.9912±0.0004 0.9904±0.0003 0.4445±0.0056 0.0865±0.0027 0.8732±0.0002 0.8666±0.0002 0.9557±0.0018 0.9878±0.0008
CharRNN 0.9748±0.0264 1.0±0.0 0.9994±0.0003 0.0732±0.0247 0.5204±0.0379 0.6015±0.0206 0.5649±0.0142 0.9998±0.0002 0.9983±0.0003 0.9242±0.0058 0.1101±0.0081 0.8562±0.0005 0.8503±0.0005 0.9943±0.0034 0.8419±0.0509
AAE 0.9368±0.0341 1.0±0.0 0.9973±0.002 0.5555±0.2033 1.0572±0.2375 0.6081±0.0043 0.5677±0.0045 0.991±0.0051 0.9905±0.0039 0.9022±0.0375 0.0789±0.009 0.8557±0.0031 0.8499±0.003 0.996±0.0006 0.7931±0.0285
VAE 0.9767±0.0012 1.0±0.0 0.9984±0.0005 0.099±0.0125 0.567±0.0338 0.6257±0.0005 0.5783±0.0008 0.9994±0.0001 0.9984±0.0003 0.9386±0.0021 0.0588±0.0095 0.8558±0.0004 0.8498±0.0004 0.997±0.0002 0.6949±0.0069
JTN-VAE 1.0±0.0 1.0±0.0 0.9996±0.0003 0.3954±0.0234 0.9382±0.0531 0.5477±0.0076 0.5194±0.007 0.9965±0.0003 0.9947±0.0002 0.8964±0.0039 0.1009±0.0105 0.8551±0.0034 0.8493±0.0035 0.976±0.0016 0.9143±0.0058
LatentGAN 0.8966±0.0029 1.0±0.0 0.9968±0.0002 0.2968±0.0087 0.8281±0.0117 0.5371±0.0004 0.5132±0.0002 0.9986±0.0004 0.9972±0.0007 0.8867±0.0009 0.1072±0.0098 0.8565±0.0007 0.8505±0.0006 0.9735±0.0006 0.9498±0.0006
For comparison of molecular properties, we computed the Wasserstein-1 distance between distributions of molecules in the generated and test sets. Below, we provide plots for lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED) and molecular weight. |logP|SA| |----|--| |![logP](images/logP.png)|![SA](images/SA.png)| |weight|QED| |![weight](images/weight.png)|![QED](images/QED.png)| # Installation ### PyPi The simplest way to install MOSES (models and metrics) is to install [RDKit](https://www.rdkit.org/docs/Install.html): `conda install -yq -c rdkit rdkit` and then install MOSES (`molsets`) from pip (`pip install molsets`). If you want to use LatentGAN, you should also install additional dependencies using `bash install_latentgan_dependencies.sh`. If you are using Ubuntu, you should also install `sudo apt-get install libxrender1 libxext6` for RDKit. ### Docker 1. Install [docker](https://docs.docker.com/install/) and [nvidia-docker](https://github.com/nvidia/nvidia-docker/wiki/Installation-(version-2.0)). 2. Pull an existing image (4.1Gb to download) from DockerHub: ```bash docker pull molecularsets/moses ``` or clone the repository and build it manually: ```bash git clone https://github.com/molecularsets/moses.git nvidia-docker image build --tag molecularsets/moses moses/ ``` 3. Create a container: ```bash nvidia-docker run -it --name moses --network="host" --shm-size 10G molecularsets/moses ``` 4. The dataset and source code are available inside the docker container at /moses: ```bash docker exec -it molecularsets/moses bash ``` ### Manually Alternatively, install dependencies and MOSES manually. 1. Clone the repository: ```bash git lfs install git clone https://github.com/molecularsets/moses.git ``` 2. [Install RDKit](https://www.rdkit.org/docs/Install.html) for metrics calculation. 3. Install MOSES: ```bash python setup.py install ``` 4. (Optional) Install dependencies for LatentGAN: ```bash bash install_latentgan_dependencies.sh ``` # Benchmarking your models * Install MOSES as described in the previous section. * Get `train`, `test` and `test_scaffolds` datasets using the following code: ```python import moses train = moses.get_dataset('train') test = moses.get_dataset('test') test_scaffolds = moses.get_dataset('test_scaffolds') ``` * You can use a standard torch [DataLoader](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) in your models. We provide a simple `StringDataset` class for convenience: ```python from torch.utils.data import DataLoader from moses import CharVocab, StringDataset train = moses.get_dataset('train') vocab = CharVocab.from_data(train) train_dataset = StringDataset(vocab, train) train_dataloader = DataLoader( train_dataset, batch_size=512, shuffle=True, collate_fn=train_dataset.default_collate ) for with_bos, with_eos, lengths in train_dataloader: ... ``` * Calculate metrics from your model's samples. We recomend sampling at least `30,000` molecules: ```python import moses metrics = moses.get_all_metrics(list_of_generated_smiles) ``` * Add generated samples and metrics to your repository. Run the experiment multiple times to estimate the variance of the metrics. # Reproducing the baselines ### End-to-End launch You can run pretty much everything with: ```bash python scripts/run.py ``` This will **split** the dataset, **train** the models, **generate** new molecules, and **calculate** the metrics. Evaluation results will be saved in `metrics.csv`. You can specify the GPU device index as `cuda:n` (or `cpu` for CPU) and/or model by running: ```bash python scripts/run.py --device cuda:1 --model aae ``` For more details run `python scripts/run.py --help`. You can reproduce evaluation of all models with several seeds by running: ```bash sh scripts/run_all_models.sh ``` ### Training ```bash python scripts/train.py \ --train_load \ --model_save \ --config_save \ --vocab_save ``` To get a list of supported models run `python scripts/train.py --help`. For more details of certain model run `python scripts/train.py --help`. ### Generation ```bash python scripts/sample.py \ --model_load \ --vocab_load \ --config_load \ --n_samples \ --gen_save ``` To get a list of supported models run `python scripts/sample.py --help`. For more details of certain model run `python scripts/sample.py --help`. ### Evaluation ```bash python scripts/eval.py \ --ref_path \ --gen_path ``` For more details run `python scripts/eval.py --help`.