# pyECO **Repository Path**: greitzmann/pyECO ## Basic Information - **Project Name**: pyECO - **Description**: python implementation of efficient convolution operators for tracking - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Python Implementation of ECO ## Run demo ```bash cd pyECO/eco/features/ python setup.py build_ext --inplace pip install numpy scipy python-opencv glob pandas pillow # if you want to use deep feature pip install mxnet-cu80(or 90 according to your cuda version) pip install cupy-cu80(or 90 according to your cuda version) cd pyECO/ python bin/demo_ECO_hc.py --video_dir path/to/video ``` ## Convert to deep feature version uncomment eco/config/config.py at line5 and comment eco/config/config.py at line 6 ## Benchmark results #### OTB100 | Tracker | AUC | Speed | | -------- | ------------- | --------------------- | | ECO_deep | 68.7(vs 69.1) | 6~8fps on GTX 1080 Ti | | ECO_hc | 65.2(vs 65.0) | 40~60fps on Intel i5 | ![](./figure/otb100.png) ## Visualization Results ![](./figure/Liquor.png) ## Note we use ResNet50 feature instead of the original imagenet-vgg-m-2048 code tested on mac os 10.13 and python 3.6, ubuntu 16.04 and python 3.6 ## Reference [1] Danelljan, Martin and Bhat, Goutam and Shahbaz Khan, Fahad and Felsberg, Michael ​ ECO: Efficient Convolution Operators for Tracking ​ In Conference on Computer Vision and Pattern Recognition (CVPR), 2017