# AniPortrait **Repository Path**: gtengfei/AniPortrait ## Basic Information - **Project Name**: AniPortrait - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-25 - **Last Updated**: 2024-06-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AniPortrait **AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations** Author: Huawei Wei, Zejun Yang, Zhisheng Wang Organization: Tencent Games Zhiji, Tencent ![zhiji_logo](asset/zhiji_logo.png) Here we propose AniPortrait, a novel framework for generating high-quality animation driven by audio and a reference portrait image. You can also provide a video to achieve face reenacment. ## Pipeline ![pipeline](asset/pipeline.png) ## Updates / TODO List - ✅ [2024/03/27] Now our paper is available on arXiv. - ✅ [2024/03/27] Update the code to generate pose_temp.npy for head pose control. - ✅ [2024/04/02] Update a new pose retarget strategy for vid2vid. Now we support substantial pose difference between ref_image and source video. - ✅ [2024/04/03] We release our Gradio [demo](https://huggingface.co/spaces/ZJYang/AniPortrait_official) on HuggingFace Spaces (thanks to the HF team for their free GPU support)! - ✅ [2024/04/07] Update a frame interpolation module to accelerate the inference process. Now you can add -acc in inference commands to get a faster video generation. - ✅ [2024/04/21] We have released the audio2pose model and [pre-trained weight](https://huggingface.co/ZJYang/AniPortrait/tree/main) for audio2video. Please update the code and download the weight file to experience. ## Various Generated Videos ### Self driven
### Face reenacment
Video Source: [鹿火CAVY from bilibili](https://www.bilibili.com/video/BV1H4421F7dE/?spm_id_from=333.337.search-card.all.click) ### Audio driven
## Installation ### Build environment We recommend a python version >=3.10 and cuda version =11.7. Then build environment as follows: ```shell pip install -r requirements.txt ``` ### Download weights All the weights should be placed under the `./pretrained_weights` direcotry. You can download weights manually as follows: 1. Download our trained [weights](https://huggingface.co/ZJYang/AniPortrait/tree/main), which include the following parts: `denoising_unet.pth`, `reference_unet.pth`, `pose_guider.pth`, `motion_module.pth`, `audio2mesh.pt`, `audio2pose.pt` and `film_net_fp16.pt`. 2. Download pretrained weight of based models and other components: - [StableDiffusion V1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) - [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse) - [image_encoder](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/tree/main/image_encoder) - [wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) Finally, these weights should be orgnized as follows: ```text ./pretrained_weights/ |-- image_encoder | |-- config.json | `-- pytorch_model.bin |-- sd-vae-ft-mse | |-- config.json | |-- diffusion_pytorch_model.bin | `-- diffusion_pytorch_model.safetensors |-- stable-diffusion-v1-5 | |-- feature_extractor | | `-- preprocessor_config.json | |-- model_index.json | |-- unet | | |-- config.json | | `-- diffusion_pytorch_model.bin | `-- v1-inference.yaml |-- wav2vec2-base-960h | |-- config.json | |-- feature_extractor_config.json | |-- preprocessor_config.json | |-- pytorch_model.bin | |-- README.md | |-- special_tokens_map.json | |-- tokenizer_config.json | `-- vocab.json |-- audio2mesh.pt |-- audio2pose.pt |-- denoising_unet.pth |-- film_net_fp16.pt |-- motion_module.pth |-- pose_guider.pth `-- reference_unet.pth ``` Note: If you have installed some of the pretrained models, such as `StableDiffusion V1.5`, you can specify their paths in the config file (e.g. `./config/prompts/animation.yaml`). ## Gradio Web UI You can try out our web demo by the following command. We alse provide online demo in Huggingface Spaces. ```shell python -m scripts.app ``` ## Inference Kindly note that you can set -L to the desired number of generating frames in the command, for example, `-L 300`. **Acceleration method**: If it takes long time to generate a video, you can download [film_net_fp16.pt](https://huggingface.co/ZJYang/AniPortrait/tree/main) and put it under the `./pretrained_weights` direcotry. Then add `-acc` in the command. Here are the cli commands for running inference scripts: ### Self driven ```shell python -m scripts.pose2vid --config ./configs/prompts/animation.yaml -W 512 -H 512 -acc ``` You can refer the format of animation.yaml to add your own reference images or pose videos. To convert the raw video into a pose video (keypoint sequence), you can run with the following command: ```shell python -m scripts.vid2pose --video_path pose_video_path.mp4 ``` ### Face reenacment ```shell python -m scripts.vid2vid --config ./configs/prompts/animation_facereenac.yaml -W 512 -H 512 -acc ``` Add source face videos and reference images in the animation_facereenac.yaml. ### Audio driven ```shell python -m scripts.audio2vid --config ./configs/prompts/animation_audio.yaml -W 512 -H 512 -acc ``` Add audios and reference images in the animation_audio.yaml. Delete `pose_temp` in `./configs/prompts/animation_audio.yaml` can enable the audio2pose model. You can also use this command to generate a pose_temp.npy for head pose control: ```shell python -m scripts.generate_ref_pose --ref_video ./configs/inference/head_pose_temp/pose_ref_video.mp4 --save_path ./configs/inference/head_pose_temp/pose.npy ``` ## Training ### Data preparation Download [VFHQ](https://liangbinxie.github.io/projects/vfhq/) and [CelebV-HQ](https://github.com/CelebV-HQ/CelebV-HQ) Extract keypoints from raw videos and write training json file (here is an example of processing VFHQ): ```shell python -m scripts.preprocess_dataset --input_dir VFHQ_PATH --output_dir SAVE_PATH --training_json JSON_PATH ``` Update lines in the training config file: ```yaml data: json_path: JSON_PATH ``` ### Stage1 Run command: ```shell accelerate launch train_stage_1.py --config ./configs/train/stage1.yaml ``` ### Stage2 Put the pretrained motion module weights `mm_sd_v15_v2.ckpt` ([download link](https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15_v2.ckpt)) under `./pretrained_weights`. Specify the stage1 training weights in the config file `stage2.yaml`, for example: ```yaml stage1_ckpt_dir: './exp_output/stage1' stage1_ckpt_step: 30000 ``` Run command: ```shell accelerate launch train_stage_2.py --config ./configs/train/stage2.yaml ``` ## Acknowledgements We first thank the authors of [EMO](https://github.com/HumanAIGC/EMO), and part of the images and audios in our demos are from EMO. Additionally, we would like to thank the contributors to the [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone), [majic-animate](https://github.com/magic-research/magic-animate), [animatediff](https://github.com/guoyww/AnimateDiff) and [Open-AnimateAnyone](https://github.com/guoqincode/Open-AnimateAnyone) repositories, for their open research and exploration. ## Citation ``` @misc{wei2024aniportrait, title={AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations}, author={Huawei Wei and Zejun Yang and Zhisheng Wang}, year={2024}, eprint={2403.17694}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```