# DoorDetect-Dataset **Repository Path**: gtengfei/DoorDetect-Dataset ## Basic Information - **Project Name**: DoorDetect-Dataset - **Description**: door data数据集 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-09-14 - **Last Updated**: 2022-09-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DoorDetect Dataset DoorDetect is a dataset of 1,213 images that have been annotated with object bounding boxes. The images are very diverse and often contain complex scenes with several objects. ## Images The images annotated are from [Open Images Dataset V4](https://storage.googleapis.com/openimages/web/index.html) and [MCIndoor20000 ](https://github.com/bircatmcri/MCIndoor20000). ![alt text](/readme_figures/Fig1.png) ## Object Classes The identified object classes are: ***handle***; ***door***, which refers to any room door; ***cabinet door***, which refers to any drawer or small door; and ***refrigerator door***, which refers to any door in a refrigerator. ![alt text](/readme_figures/Fig2.png) ## Labels The object location is specified by the coordinates of its bounding box. Boxes were marked using [Yolo_mark](https://github.com/AlexeyAB/Yolo_mark). There is a .txt file for each image with the same name. Each line in the label file is of the form: ` `. Where: * ``: integer number of object. (0) *door*; (1) *handle*; (2) *cabinet door*; (3) *refrigerator door*. * ` `: float values relative to width and height of the image. * ` `: center of the box. ![alt text](/readme_figures/Fig3.png) ## YOLO with DoorDetect The dataset can be used for training and testing an object detection CNN such as [YOLO](https://pjreddie.com/darknet/yolo/). Weights for detecting doors and handles with YOLO can be downloaded from: [YOLO_weights](https://drive.google.com/open?id=1i9E9pTPN5MtRxgBJWLnfQl2ypCv92dXk) (mAP=45%). For running YOLO you might also need the network configuration file [yolo-obj.cfg](https://github.com/MiguelARD/DoorDetect-Dataset/blob/master/yolo-obj.cfg) and a text file where the detected classes names and their order is specified [obj.names](https://github.com/MiguelARD/DoorDetect-Dataset/blob/master/obj.names). ![alt text](/readme_figures/Fig4.png) ## Citation Please cite the paper in your publications if it helps your research. ``` @article{Arduengo_2021, title={Robust and adaptive door operation with a mobile robot}, ISSN={1861-2784}, url={http://dx.doi.org/10.1007/s11370-021-00366-7}, DOI={10.1007/s11370-021-00366-7}, journal={Intelligent Service Robotics}, publisher={Springer Science and Business Media LLC}, author={Arduengo, Miguel and Torras, Carme and Sentis, Luis}, year={2021}, month={May} } ``` Link to the paper: [Robust and Adaptive Door Operation with a Mobile Robot](https://link.springer.com/article/10.1007/s11370-021-00366-7)