# dgconv.pytorch **Repository Path**: guanglu--ye/dgconv.pytorch ## Basic Information - **Project Name**: dgconv.pytorch - **Description**: [ICCV 2019] PyTorch implementation of Dynamic Grouping Convolution and Groupable ConvNet with pre-trained G-ResNeXt models - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-10-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # dgconv.pytorch PyTorch implementation of Dynamic Grouping Convolution and Groupable ConvNet in [Differentiable Learning-to-Group Channels via Groupable Convolutional Neural Networks](https://arxiv.org/abs/1908.05867). ![](figs/Dynamic_Conv.png) * *Kronecker Product* is utilized to construct the sparse matrix efficiently and regularly. * Discrete optimization is solved with the *Straight-Through Estimator* trick. * Automatically learn the number of groups in an end-to-end differentiable fashion. ## ResNeXt-50 on ImageNet **DGConv** is used as a drop-in replacement of depthwise separable convolution in the original ResNeXt to build G-ResNeXt-50/101 network architectures. Here are some results of their performance comparison. | Architecture | LR decay strategy | Top-1 / Top-5 Accuracy | | ------------------------------------------------------------ | ------------------- | ---------------------- | | [ResNeXt-50 (32x4d)](https://drive.google.com/open?id=1zVQm-aoJV6GRi-mCds7B8HVcsI8Jbjim) | cosine (120 epochs) | 78.198 / 93.916 | | [G-ResNeXt](https://drive.google.com/open?id=1elM-FVacE-Pkin_hCiW24oKCogHEaYRn) | cosine (120 epochs) | 78.592 / 94.106 | ![](figs/ablation.png) ## Citation ```bibtex @InProceedings{Zhang_2019_ICCV, author = {Zhang, Zhaoyang and Li, Jingyu and Shao, Wenqi and Peng, Zhanglin and Zhang, Ruimao and Wang, Xiaogang and Luo, Ping}, title = {Differentiable Learning-to-Group Channels via Groupable Convolutional Neural Networks}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {Oct}, year = {2019} } ```