# machine_learning_python **Repository Path**: guzhipin/machine_learning_python ## Basic Information - **Project Name**: machine_learning_python - **Description**: 通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-12-07 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # machine-learning 通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。 # 目前已经实现可运行算法 ### [KNN和KdTree的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/knn) ### [感知机的基本形式和对偶形式的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/perceptron) ### [Kmeans和Kmeans++的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/kmeans) ### [EM GMM高斯混合和GMM+LASSO的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/em) ### [实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/naive_bayes) ### [实现决策树的基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/decision_tree) ### [实现adaboost基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/adaboost) ### [实现svm基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/support_vector_machine) ### [实现逻辑回归基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/logistic_regression)