# DeepCompression-PyTorch **Repository Path**: gvraky/DeepCompression-PyTorch ## Basic Information - **Project Name**: DeepCompression-PyTorch - **Description**: Resnet剪枝 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [Learning both Weights and Connections for Efficient Neural Networks](https://arxiv.org/abs/1506.02626) A PyTorch implementation of [this paper](https://arxiv.org/abs/1506.02626). I'm currently in the process of updating this to work with the latest version of PyTorch! Currently the only network type that works is ResNet - other networks coming soon. To run, try: ```bash python train.py --model='resnet34' --checkpoint='resnet34' python prune.py --model='resnet34' --checkpoint='resnet34' ``` ## Summary Given a family of ResNets, we can construct a Pareto frontier of the tradeoff between accuracy and number of parameters: ![alt text](./resources/resnets.png) Han et al. posit that we can beat this Pareto frontier by leaving network structures fixed, but removing individual parameters: ![alt text](./resources/pareto.png)