# PFN **Repository Path**: gyguo95/PFN ## Basic Information - **Project Name**: PFN - **Description**: This is the release for paper "PoseFlow: A Deep Motion Representation for Understanding Human Behaviors in Videos" CVPR2018 - **Primary Language**: C++ - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-01 - **Last Updated**: 2022-07-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PFN This is the release for paper "PoseFlow: A Deep Motion Representation for Understanding Human Behaviors in Videos" CVPR2018 ## Running 1. ##### Download [CMU Panoptic dataset](http://domedb.perception.cs.cmu.edu/), we use "Pose" subset 2. ##### Select images and generate ground truth poseflow - generate mat file for the dataset ``` run scripts/get_continuous_data.m ``` you can skip this step by downloading the results form [Google Drive](https://drive.google.com/file/d/1_5XtfKWhMz4RlhJq-jJWjpA9B6Z2C312/view?usp=sharing) - sampling the data with random duration ``` run scripts/generate_DS_database.m # down sampling the data ``` - generate poseflow ground truth ``` run scripts/generate_DS_poseFlow448_data.m # generate ground truth ``` 3. ##### Prepare caffe, we use [Caffe for FlowNet2 ](https://github.com/lmb-freiburg/flownet2) 4. ##### Generate hmdb file before training ``` sh data/make-lmdb.sh ``` 5. ##### Training PFN ``` sh models/PFNST-CV/train.sh ``` 6. ##### Test and generate poseflow ``` run scripts/test_epe.m ``` ## Model download The trained model can be downloaded from [Google Drive](https://drive.google.com/file/d/1fREbtXEl5QILds6WCDu8jOS2q0DPq5gg/view?usp=sharing) ## gitee code has also been released in [gitee](https://gitee.com/gyguo95/PFN) ## Citation When using the code in your research work, please cite the following paper: ``` @inproceedings{zhang2018poseflow, title={PoseFlow: A Deep Motion Representation for Understanding Human Behaviors in Videos}, author={Zhang, Dingwen and Guo, Guangyu and Huang, Dong and Han, Junwei}, booktitle={2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={6762--6770}, year={2018}, organization={IEEE} } ```