# MachineLearning **Repository Path**: gzupanda/MachineLearning ## Basic Information - **Project Name**: MachineLearning - **Description**: Machine learning resources,including algorithm, paper, dataset, example and so on. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-02 - **Last Updated**: 2021-11-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## MachineLearning 机器学习算法代码及个人总结整理,对于算法实现部分,在相应目录中都包含有源码和数据以及测试实例,内容正在不断完善中!如有错误,望不吝指教。PS:所有代码均符合我们整理出来的这份[编码规范](https://github.com/csuldw/MachineLearning/blob/master/Python-coding-standards.md). ## Contents 算法部分目前主要包含如下部分: - Logistic Regression (二分类): [源码实现](https://github.com/csuldw/MachineLearning/tree/master/Logistic%20Regression) 。包含数据集和源码。 - Decision Tree: 决策树,[源码实现](https://github.com/csuldw/MachineLearning/tree/master/DecisionTree). - ROC: 用于绘制ROC曲线,[源码实现](https://github.com/csuldw/MachineLearning/tree/master/ROC). - Naive Bayes:朴素贝叶斯,[源码实现](https://github.com/csuldw/MachineLearning/tree/master/NaiveBayes). - K-NearestNeighbor:K最近邻算法,[源码实现](https://github.com/csuldw/MachineLearning/tree/master/KNN). - K-Means均值聚类:[源码实现](https://github.com/csuldw/MachineLearning/tree/master/Kmeans). - Adaboost组合算法:[源码链接](https://github.com/csuldw/MachineLearning/tree/master/Adaboost) - mRMR特征选择方法,[软件使用方法](https://github.com/csuldw/MachineLearning/tree/master/mRMR) - 机器学习算法代码使用汇总,[Python & R Codes](http://www.csuldw.com/2015/11/21/2015-11-21-machine-learning-algorithms/) - PCA主要成分分析, [Python实现源码](https://github.com/csuldw/MachineLearning/tree/master/PCA) - LDA线性判别分析(Fisher判别),[源码实现](https://github.com/csuldw/MachineLearning/blob/master/LDA/lda.ipynb) - spark-demo:使用scala编写的spark实例. - invertedIndex, [Spark 倒排索引实例源码](https://github.com/csuldw/MachineLearning/tree/master/spark-demo/invertedIndex) ## Supplementary - MNIST数据集[加载方法](https://github.com/csuldw/MachineLearning/tree/master/dataset/MNIST). ## Contributor - 刘帝伟, 中南大学2014级硕士,[HomePage](http://www.csuldw.com). ## Contact - QQ: 466454368 - E-mail: csu.ldw@csu.edu.cn